Odd and Even Elliptic Curves with Complex Multiplication (2024)

YuriG.ZarhinDepartment of Mathematics, Pennsylvania State University,University Park, PA 16802, USAzarhin@math.psu.edu

Abstract.

We call an order O𝑂Oitalic_O in a quadratic field K𝐾Kitalic_K odd (resp. even) if its discriminant is an odd (resp.even) integer.We call an elliptic curve E𝐸Eitalic_E over β„‚β„‚{\mathbb{C}}blackboard_C with CM odd (resp. even) if its endomorphism ring End⁒(E)End𝐸\mathrm{End}(E)roman_End ( italic_E ) is an odd (resp. even)order in the imaginary quadratic field End⁒(E)βŠ—β„štensor-productEndπΈβ„š\mathrm{End}(E)\otimes{\mathbb{Q}}roman_End ( italic_E ) βŠ— blackboard_Q.

Suppose that j⁒(E)βˆˆβ„π‘—πΈβ„j(E)\in{\mathbb{R}}italic_j ( italic_E ) ∈ blackboard_R and let us consider the set π’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) of all j⁒(Eβ€²)𝑗superscript𝐸′j(E^{\prime})italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) where Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is any elliptic curve that enjoys the following properties.

  • β€’

    Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT isisogenous to E𝐸Eitalic_E;

  • β€’

    j⁒(Eβ€²)βˆˆβ„π‘—superscript𝐸′ℝj(E^{\prime})\in{\mathbb{R}}italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ∈ blackboard_R;

  • β€’

    Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has the same parity as E𝐸Eitalic_E.

We prove that the closure of π’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) in ℝℝ{\mathbb{R}}blackboard_R is the closed semi-infinite interval (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ] (resp. the whole ℝℝ{\mathbb{R}}blackboard_R) if E𝐸Eitalic_E is odd (resp. even).

This paper was inspired by a questionof Jean-Louis Colliot-ThΓ©lΓ¨ne and Alena Pirutka about the distribution of j𝑗jitalic_j-invariants of certain elliptic curves of CM type.

1. Orders in quadratic fields

As usual β„€,β„š,ℝ,β„‚β„€β„šβ„β„‚{\mathbb{Z}},{\mathbb{Q}},{\mathbb{R}},{\mathbb{C}}blackboard_Z , blackboard_Q , blackboard_R , blackboard_C stand for the ring of integers and the fields of rational, real and complex numbers respectively.If n𝑛nitalic_n is a positive integer then we write ℀⁒[1/n]β„€delimited-[]1𝑛{\mathbb{Z}}[1/n]blackboard_Z [ 1 / italic_n ] for the subring of β„šβ„š{\mathbb{Q}}blackboard_Q generated by β„€β„€{\mathbb{Z}}blackboard_Z and 1/n1𝑛1/n1 / italic_n. More generally,If F𝐹Fitalic_F is a field of characteristic zero and A𝐴Aitalic_A is a subring of F𝐹Fitalic_F (with 1111) then we write A⁒[1/n]𝐴delimited-[]1𝑛A[1/n]italic_A [ 1 / italic_n ] for the subringof F𝐹Fitalic_F generated by A𝐴Aitalic_A and 1/n1𝑛1/n1 / italic_n; clearly, A⁒[1/n]𝐴delimited-[]1𝑛A[1/n]italic_A [ 1 / italic_n ] is a ℀⁒[1/n]β„€delimited-[]1𝑛{\mathbb{Z}}[1/n]blackboard_Z [ 1 / italic_n ]-subalgebra of F𝐹Fitalic_F. We write β„€(2)subscriptβ„€2{\mathbb{Z}}_{(2)}blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT for the subring of β„šβ„š{\mathbb{Q}}blackboard_Qthat consists of all fractions anπ‘Žπ‘›\frac{a}{n}divide start_ARG italic_a end_ARG start_ARG italic_n end_ARG where aβˆˆβ„€π‘Žβ„€a\in{\mathbb{Z}}italic_a ∈ blackboard_Z and n𝑛nitalic_n an odd integer.

Let K𝐾Kitalic_K be a quadratic field, OKsubscript𝑂𝐾O_{K}italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT its ring of integers, and

tr=trK:Kβ†’β„š:trsubscripttrπΎβ†’πΎβ„š\mathrm{tr}=\mathrm{tr}_{K}:K\to{\mathbb{Q}}roman_tr = roman_tr start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT : italic_K β†’ blackboard_Q

be the corresponding trace map attached to the field extension K/β„šπΎβ„šK/{\mathbb{Q}}italic_K / blackboard_Q.We have

2⁒℀=tr⁒(β„€)βŠ‚tr⁒(OK)βŠ‚β„€.2β„€trβ„€trsubscript𝑂𝐾℀2{\mathbb{Z}}=\mathrm{tr}({\mathbb{Z}})\subset\mathrm{tr}(O_{K})\subset{%\mathbb{Z}}.2 blackboard_Z = roman_tr ( blackboard_Z ) βŠ‚ roman_tr ( italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) βŠ‚ blackboard_Z .

Let O𝑂Oitalic_O be an order in K𝐾Kitalic_K and let a positive integer 𝔣=𝔣O𝔣subscript𝔣𝑂\mathfrak{f}=\mathfrak{f}_{O}fraktur_f = fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT be the conductor of O𝑂Oitalic_O. This means that

O=β„€+𝔣⋅OKβŠ‚OK𝑂℀⋅𝔣subscript𝑂𝐾subscript𝑂𝐾O={\mathbb{Z}}+\mathfrak{f}\cdot O_{K}\subset O_{K}italic_O = blackboard_Z + fraktur_f β‹… italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT βŠ‚ italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT

and 𝔣𝔣\mathfrak{f}fraktur_f coincides with the index [OK:O]delimited-[]:subscript𝑂𝐾𝑂[O_{K}:O][ italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT : italic_O ] of the additive subgroup O𝑂Oitalic_O in OKsubscript𝑂𝐾O_{K}italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT[2, Ch. 2, Sect. 7, Th.1].Since β„€βŠ‚O℀𝑂{\mathbb{Z}}\subset Oblackboard_Z βŠ‚ italic_O and tr⁒(β„€)=2⁒℀trβ„€2β„€\mathrm{tr}({\mathbb{Z}})=2{\mathbb{Z}}roman_tr ( blackboard_Z ) = 2 blackboard_Z,

tr⁒(O)=β„€or⁒ 2⁒℀.tr𝑂℀or2β„€\mathrm{tr}(O)={\mathbb{Z}}\quad\text{or}\ 2{\mathbb{Z}}.roman_tr ( italic_O ) = blackboard_Z or 2 blackboard_Z .(1)

Recall that the discriminant discr⁒(O)βˆˆβ„€discr𝑂℀\mathrm{discr}(O)\in{\mathbb{Z}}roman_discr ( italic_O ) ∈ blackboard_Z of O𝑂Oitalic_O is the discriminant of the symmetric bilinear form

OΓ—Oβ†’β„€,a,b↦tr⁒(a⁒b).formulae-sequenceβ†’π‘‚π‘‚β„€π‘Žmaps-to𝑏trπ‘Žπ‘O\times O\to{\mathbb{Z}},\ a,b\mapsto\mathrm{tr}(ab).italic_O Γ— italic_O β†’ blackboard_Z , italic_a , italic_b ↦ roman_tr ( italic_a italic_b ) .

By definition, the discriminant discr⁒(K)discr𝐾\mathrm{discr}(K)roman_discr ( italic_K ) of the field K𝐾Kitalic_K is discr⁒(OK)discrsubscript𝑂𝐾\mathrm{discr}(O_{K})roman_discr ( italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ). It is well known [2, Ch. 2, Sect. 7, Th.1] that

discr⁒(O)=𝔣O2β‹…discr⁒(OK)=𝔣O2β‹…discr⁒(K).discr𝑂⋅superscriptsubscript𝔣𝑂2discrsubscript𝑂𝐾⋅superscriptsubscript𝔣𝑂2discr𝐾\mathrm{discr}(O)=\mathfrak{f}_{O}^{2}\cdot\mathrm{discr}(O_{K})=\mathfrak{f}_%{O}^{2}\cdot\mathrm{discr}(K).roman_discr ( italic_O ) = fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‹… roman_discr ( italic_O start_POSTSUBSCRIPT italic_K end_POSTSUBSCRIPT ) = fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT β‹… roman_discr ( italic_K ) .(2)
Definition 1.1 (Definition-Lemma).

An order O𝑂Oitalic_O is called odd if it enjoys the following equivalent properties.

  • (i)

    tr⁒(O)=β„€tr𝑂℀\mathrm{tr}(O)={\mathbb{Z}}roman_tr ( italic_O ) = blackboard_Z.

  • (ii)

    discr⁒(O)discr𝑂\mathrm{discr}(O)roman_discr ( italic_O ) is an odd integer.

  • (iii)

    Both discr⁒(K)discr𝐾\mathrm{discr}(K)roman_discr ( italic_K ) and the conductor 𝔣Osubscript𝔣𝑂\mathfrak{f}_{O}fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT are odd integers.

  • (iv)

    There exists an integer D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) that is not a square such that

    1+D2∈O.1𝐷2𝑂\frac{1+\sqrt{D}}{2}\in O.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O .
Definition 1.2 (Definition-Lemma).

An order O𝑂Oitalic_O in a quadratic field K𝐾Kitalic_K is called even if it enjoys the following equivalent properties.

  • (i)

    tr⁒(O)=2⁒℀tr𝑂2β„€\mathrm{tr}(O)=2{\mathbb{Z}}roman_tr ( italic_O ) = 2 blackboard_Z.

  • (ii)

    discr⁒(O)discr𝑂\mathrm{discr}(O)roman_discr ( italic_O ) is an even integer.

  • (iii)

    Either discr⁒(K)discr𝐾\mathrm{discr}(K)roman_discr ( italic_K ) or the conductor 𝔣Osubscript𝔣𝑂\mathfrak{f}_{O}fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT is an even integer.

Clearly, every order O𝑂Oitalic_O is either odd or even. We prove Lemmas 1.1 and 1.2 in Section 5.

Definition 1.3.

Let E𝐸Eitalic_E be an elliptic curve with complex multiplication (CM) over the field β„‚β„‚{\mathbb{C}}blackboard_C of complex numbers.Then its endomorphism ring End⁒(E)End𝐸\mathrm{End}(E)roman_End ( italic_E ) is an order in the imaginary quadratic field

K:=End(E)βŠ—β„š=:End0(E).K:=\mathrm{End}(E)\otimes{\mathbb{Q}}=:\mathrm{End}^{0}(E).italic_K := roman_End ( italic_E ) βŠ— blackboard_Q = : roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ) .

We say that E𝐸Eitalic_E is odd (resp. even) if the order End⁒(E)End𝐸\mathrm{End}(E)roman_End ( italic_E ) is odd (resp. even).

Clearly, every elliptic curve over β„‚β„‚{\mathbb{C}}blackboard_C with CM is either odd or even. The following assertions will be proven in Section 6.

Proposition 1.4.

Let Ο•:E1β†’E2:italic-Ο•β†’subscript𝐸1subscript𝐸2\phi:E_{1}\to E_{2}italic_Ο• : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be an isogeny of complex elliptic curves with CM.Suppose that n=deg⁑(Ο•)𝑛degreeitalic-Ο•n=\deg(\phi)italic_n = roman_deg ( italic_Ο• ) is an odd integer.Then E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is odd (resp. even) if and only if E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is odd (resp. even).In other words, E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same parity.

Proposition 1.5.

Suppose that E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are isogenous CM elliptic curves over β„‚β„‚{\mathbb{C}}blackboard_C. Suppose that there are elliptic curvesE1,ℝsubscript𝐸1ℝE_{1,{\mathbb{R}}}italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT and E2,ℝsubscript𝐸2ℝE_{2,{\mathbb{R}}}italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT over the field ℝℝ{\mathbb{R}}blackboard_R of real numbers such that there are isomorphisms of complex elliptic curves

E1β‰…E1,ℝ×ℝℂ,E2=E2,ℝ×ℝℂ.formulae-sequencesubscript𝐸1subscriptℝsubscript𝐸1ℝℂsubscript𝐸2subscriptℝsubscript𝐸2ℝℂE_{1}\cong E_{1,{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}},\quad E_{2}=E_{%2,{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}.italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‰… italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C , italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C .

Then E1,ℝsubscript𝐸1ℝE_{1,{\mathbb{R}}}italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT and E2,ℝsubscript𝐸2ℝE_{2,{\mathbb{R}}}italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT are isogenous over ℝℝ{\mathbb{R}}blackboard_R.

Remark 1.6.

Let E𝐸Eitalic_E be an elliptic curve over β„‚β„‚{\mathbb{C}}blackboard_C. It is well known [5, Ch. 3, Sect. 2, Prop. 3.7] that j⁒(E)βˆˆβ„π‘—πΈβ„j(E)\in{\mathbb{R}}italic_j ( italic_E ) ∈ blackboard_R if and only if E𝐸Eitalic_E may be defined over ℝℝ{\mathbb{R}}blackboard_R, i.e.,there is an elliptic curve Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT over ℝℝ{\mathbb{R}}blackboard_R such that Eβ‰…Eℝ×ℝℂ𝐸subscriptℝsubscript𝐸ℝℂE\cong E_{{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}italic_E β‰… italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C. (See also [11, Appendix A, Prop. 1.2(b)] and [9, Ch. 4, Sect. 4.1]).)

Examples 1.7.
  • (e)

    If E𝐸Eitalic_E is an elliptic curve y2=x3βˆ’xsuperscript𝑦2superscriptπ‘₯3π‘₯y^{2}=x^{3}-xitalic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - italic_x then it is well known that the order End⁒(E)=℀⁒[βˆ’1]End𝐸℀delimited-[]1\mathrm{End}(E)={\mathbb{Z}}[\sqrt{-1}]roman_End ( italic_E ) = blackboard_Z [ square-root start_ARG - 1 end_ARG ] has even discriminant βˆ’44-4- 4 and therefore E𝐸Eitalic_E is even.

  • (o)

    If E𝐸Eitalic_E is an elliptic curve y2=x3βˆ’1superscript𝑦2superscriptπ‘₯31y^{2}=x^{3}-1italic_y start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_x start_POSTSUPERSCRIPT 3 end_POSTSUPERSCRIPT - 1 then it is well known that the order End⁒(E)=℀⁒[βˆ’1+βˆ’32]End𝐸℀delimited-[]132\mathrm{End}(E)={\mathbb{Z}}\left[\frac{-1+\sqrt{-3}}{2}\right]roman_End ( italic_E ) = blackboard_Z [ divide start_ARG - 1 + square-root start_ARG - 3 end_ARG end_ARG start_ARG 2 end_ARG ] has odd discriminant βˆ’33-3- 3 and therefore E𝐸Eitalic_E isodd.

2. j𝑗jitalic_j-invariants of CM elliptic curves

In what follows, E𝐸Eitalic_E is an elliptic curve over β„‚β„‚{\mathbb{C}}blackboard_C.The following assertion will be proven in Section 3.

Proposition 2.1.

Let us considerthe subset JE,issubscript𝐽𝐸isJ_{E,\mathrm{is}}italic_J start_POSTSUBSCRIPT italic_E , roman_is end_POSTSUBSCRIPT of all j⁒(Eβ€²)𝑗superscript𝐸′j(E^{\prime})italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) where Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT runs through the set of ellipticcurves over β„‚β„‚{\mathbb{C}}blackboard_C such that there exists an isogeny Eβ†’E′→𝐸superscript𝐸′E\to E^{\prime}italic_E β†’ italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT of odd degree.

Then JE,issubscript𝐽𝐸isJ_{E,\mathrm{is}}italic_J start_POSTSUBSCRIPT italic_E , roman_is end_POSTSUBSCRIPT is dense in β„‚β„‚{\mathbb{C}}blackboard_C.

Remark 2.2.

If E𝐸Eitalic_E has CM thenall Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT that appear in Proposition 2.1 are elliptic curves with CMand the corresponding imaginary quadratic fields End0⁒(Eβ€²)superscriptEnd0superscript𝐸′\mathrm{End}^{0}(E^{\prime})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) are isomorphic to End0⁒(E)superscriptEnd0𝐸\mathrm{End}^{0}(E)roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ).

Notice that in light of Examples 1.7, there exist an odd CM curve and an even CM curve. Now,combining Proposition 2.1 with Proposition 1.4, we obtain the following statement.

Corollary 2.3.

Let Jodd⁒(β„‚)βŠ‚β„‚superscript𝐽oddβ„‚β„‚J^{\mathrm{odd}}({\mathbb{C}})\subset{\mathbb{C}}italic_J start_POSTSUPERSCRIPT roman_odd end_POSTSUPERSCRIPT ( blackboard_C ) βŠ‚ blackboard_C be the set of all j⁒(Eodd)𝑗superscript𝐸oddj(E^{\mathrm{odd}})italic_j ( italic_E start_POSTSUPERSCRIPT roman_odd end_POSTSUPERSCRIPT ) where Eoddsuperscript𝐸oddE^{\mathrm{odd}}italic_E start_POSTSUPERSCRIPT roman_odd end_POSTSUPERSCRIPT runs through the setof all odd elliptic curves over β„‚β„‚{\mathbb{C}}blackboard_C with CM.

Let Jev⁒(β„‚)βŠ‚β„‚superscript𝐽evβ„‚β„‚J^{\mathrm{ev}}({\mathbb{C}})\subset{\mathbb{C}}italic_J start_POSTSUPERSCRIPT roman_ev end_POSTSUPERSCRIPT ( blackboard_C ) βŠ‚ blackboard_C be the set of all j⁒(Eev)𝑗superscript𝐸evj(E^{\mathrm{ev}})italic_j ( italic_E start_POSTSUPERSCRIPT roman_ev end_POSTSUPERSCRIPT ) where Eevsuperscript𝐸evE^{\mathrm{ev}}italic_E start_POSTSUPERSCRIPT roman_ev end_POSTSUPERSCRIPT runs through the setof all even elliptic curves over β„‚β„‚{\mathbb{C}}blackboard_C with CM.

Then each of two subsets Jodd⁒(β„‚)superscript𝐽oddβ„‚J^{\mathrm{odd}}({\mathbb{C}})italic_J start_POSTSUPERSCRIPT roman_odd end_POSTSUPERSCRIPT ( blackboard_C ) and Jev⁒(β„‚)superscript𝐽evβ„‚J^{\mathrm{ev}}({\mathbb{C}})italic_J start_POSTSUPERSCRIPT roman_ev end_POSTSUPERSCRIPT ( blackboard_C ) is dense in β„‚β„‚{\mathbb{C}}blackboard_C.

Our main result is the following assertion.

Theorem 2.4.

Suppose that E𝐸Eitalic_E is a CM curve with j⁒(E)βˆˆβ„π‘—πΈβ„j(E)\in{\mathbb{R}}italic_j ( italic_E ) ∈ blackboard_R. Let us consider the set π’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) of all j⁒(Eβ€²)𝑗superscript𝐸′j(E^{\prime})italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) where Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is any elliptic curve over β„‚β„‚{\mathbb{C}}blackboard_Cthat enjoys the following properties.

  • β€’

    Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is isogenousto E𝐸Eitalic_E;

  • β€’

    j⁒(Eβ€²)βˆˆβ„π‘—superscript𝐸′ℝj(E^{\prime})\in{\mathbb{R}}italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) ∈ blackboard_R;

  • β€’

    Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT has the same parity as E𝐸Eitalic_E.

Then the closure of π’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) in ℝℝ{\mathbb{R}}blackboard_R is the closed semi-infinite interval (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ] (resp. the whole ℝℝ{\mathbb{R}}blackboard_R) if E𝐸Eitalic_E is odd (resp. even).

We prove Theorem 2.4 in Section 4. Our proof is based on auxiliary results about isogenies of complex elliptic curves with CM that will bediscussed in Section 3.

Remark 2.5.

It follows from Remark 1.6 and Proposition 1.5 that Theorem 2.4.is equivalent to the following statement.

Theorem 2.6.

Let Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT be an elliptic curve over ℝℝ{\mathbb{R}}blackboard_R such that its complexification E=Eℝ×ℝℂ𝐸subscriptℝsubscript𝐸ℝℂE=E_{{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}italic_E = italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C is of CM type.Let us consider the set π’₯0⁒(ℝ,Eℝ)subscriptπ’₯0ℝsubscript𝐸ℝ\mathcal{J}_{0}({\mathbb{R}},E_{{\mathbb{R}}})caligraphic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( blackboard_R , italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) of all j⁒(ERβ€²)𝑗superscriptsubscript𝐸𝑅′j(E_{R}^{\prime})italic_j ( italic_E start_POSTSUBSCRIPT italic_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) where Eℝ′subscriptsuperscript𝐸′ℝE^{\prime}_{{\mathbb{R}}}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT is any elliptic curve over ℝℝ{\mathbb{R}}blackboard_R thatenjoys the following properties.

  • β€’

    Eℝ′subscriptsuperscript𝐸′ℝE^{\prime}_{{\mathbb{R}}}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT is ℝℝ{\mathbb{R}}blackboard_R-isogenous to Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT;

  • β€’

    The complexification Eβ€²:=Eℝ′×ℝℂassignsuperscript𝐸′subscriptℝsubscriptsuperscript𝐸′ℝℂE^{\prime}:=E^{\prime}_{{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT := italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C of Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPThas the same parity as E𝐸Eitalic_E.

Then the closure of π’₯0⁒(ℝ,Eℝ)subscriptπ’₯0ℝsubscript𝐸ℝ\mathcal{J}_{0}({\mathbb{R}},E_{{\mathbb{R}}})caligraphic_J start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( blackboard_R , italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) in ℝℝ{\mathbb{R}}blackboard_R is the closed semi-infinite interval (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ] (resp. the whole ℝℝ{\mathbb{R}}blackboard_R) if E𝐸Eitalic_E is odd (resp. even).

The paper is organized as follows. In Section 3 we discuss auxiliary resultsabout isogenies of complex elliptic curves. We prove our main results in Section 4,using properties of odd and even orders and parity preservation under isogenies of odd degrees that will be provenin Section 5 and 5 respectively. In Section 7 we use the techniques developed in Section3, in order to describe explicitly 2222-torsion in the class group of proper O𝑂Oitalic_O-ideals where O𝑂Oitalic_O is an odd corderin an imaginary quadratic field. In Section 8 we β€œclassify” CM elliptic curve, whose j𝑗jitalic_j-invariant is real andthe endomorphism ring is a given odd order.

3. The upper half-plane and elliptic curves

Definition 3.1.

If Ο‰1subscriptπœ”1\omega_{1}italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ο‰2subscriptπœ”2\omega_{2}italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are nonzero complex numbers such that Ο‰1/Ο‰2βˆ‰β„subscriptπœ”1subscriptπœ”2ℝ\omega_{1}/\omega_{2}\not\in{\mathbb{R}}italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ‰ blackboard_R then we write[Ο‰1,Ο‰2]subscriptπœ”1subscriptπœ”2[\omega_{1},\omega_{2}][ italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] for the discrete lattice ℀⁒ω1+℀⁒ω2β„€subscriptπœ”1β„€subscriptπœ”2{\mathbb{Z}}\omega_{1}+{\mathbb{Z}}\omega_{2}blackboard_Z italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + blackboard_Z italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of rank 2222 in β„‚β„‚{\mathbb{C}}blackboard_C.

Let

β„Œ:={x+𝐒⁒y∣x,yβˆˆβ„;y>0}βŠ‚β„‚assignβ„Œconditional-setπ‘₯𝐒𝑦formulae-sequenceπ‘₯𝑦ℝ𝑦0β„‚\mathfrak{H}:=\{x+\mathbf{i}y\mid x,y\in\mathbb{R};\ y>0\}\subset{\mathbb{C}}fraktur_H := { italic_x + bold_i italic_y ∣ italic_x , italic_y ∈ blackboard_R ; italic_y > 0 } βŠ‚ blackboard_C

be the upper half-plane. If Ο„βˆˆβ„Œπœβ„Œ\tau\in\mathfrak{H}italic_Ο„ ∈ fraktur_H then we write β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT for the complex elliptic curvesuch that the complex tori ℰτ⁒(β„‚)subscriptβ„°πœβ„‚\mathcal{E}_{\tau}({\mathbb{C}})caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ( blackboard_C ) and β„‚/ΛτℂsubscriptΞ›πœ{\mathbb{C}}/\Lambda_{\tau}blackboard_C / roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT are isomorphic. Here

Λτ:=[Ο„,1]=℀⁒τ+β„€.assignsubscriptΞ›πœπœ1β„€πœβ„€\Lambda_{\tau}:=[\tau,1]={\mathbb{Z}}\tau+{\mathbb{Z}}.roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT := [ italic_Ο„ , 1 ] = blackboard_Z italic_Ο„ + blackboard_Z .

See [12, Ch. V, p. 408–411] for a Weierstrass equation of β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. (In the notation of [12, Ch. V], our β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is EqsubscriptπΈπ‘žE_{q}italic_E start_POSTSUBSCRIPT italic_q end_POSTSUBSCRIPT with q=exp⁑(2⁒π⁒𝐒⁒τ)π‘ž2πœ‹π’πœq=\exp(2\pi\mathbf{i}\tau)italic_q = roman_exp ( 2 italic_Ο€ bold_i italic_Ο„ ).)

Remark 3.2.

If Ο„1,Ο„2βˆˆβ„Œsubscript𝜏1subscript𝜏2β„Œ\tau_{1},\tau_{2}\in\mathfrak{H}italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ fraktur_H then the group Hom⁒(β„°Ο„1,β„°Ο„2)Homsubscriptβ„°subscript𝜏1subscriptβ„°subscript𝜏2\mathrm{Hom}(\mathcal{E}_{\tau_{1}},\mathcal{E}_{\tau_{2}})roman_Hom ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) of hom*omorphisms fromβ„°Ο„1,β„°Ο„2subscriptβ„°subscript𝜏1subscriptβ„°subscript𝜏2\mathcal{E}_{\tau_{1}},\mathcal{E}_{\tau_{2}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT can be be canonically identified with

{uβˆˆβ„‚βˆ£u⁒(Λτ1)βŠ‚Ξ›Ο„2}βŠ‚β„‚.conditional-set𝑒ℂ𝑒subscriptΞ›subscript𝜏1subscriptΞ›subscript𝜏2β„‚\{u\in{\mathbb{C}}\mid u(\Lambda_{\tau_{1}})\subset\Lambda_{\tau_{2}}\}\subset%{\mathbb{C}}.{ italic_u ∈ blackboard_C ∣ italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT } βŠ‚ blackboard_C .(3)

Each u𝑒uitalic_u that satisfies (3) corresponds to the hom*omorphism

Ο•u:β„°Ο„1β†’β„°Ο„2:subscriptitalic-ϕ𝑒→subscriptβ„°subscript𝜏1subscriptβ„°subscript𝜏2\phi_{u}:\mathcal{E}_{\tau_{1}}\to\mathcal{E}_{\tau_{2}}italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT : caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT β†’ caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT

of elliptic curves such that the corresponding action of Ο•usubscriptitalic-ϕ𝑒\phi_{u}italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPTon the complex points is as follows.

β„°Ο„1⁒(β„‚)=β„‚/Λτ1β†’β„‚/Λτ2=β„°Ο„2⁒(β„‚),z+Λτ1↦u⁒z+Λτ2.formulae-sequencesubscriptβ„°subscript𝜏1β„‚β„‚subscriptΞ›subscript𝜏1β†’β„‚subscriptΞ›subscript𝜏2subscriptβ„°subscript𝜏2β„‚maps-to𝑧subscriptΞ›subscript𝜏1𝑒𝑧subscriptΞ›subscript𝜏2\mathcal{E}_{\tau_{1}}({\mathbb{C}})={\mathbb{C}}/\Lambda_{\tau_{1}}\to{%\mathbb{C}}/\Lambda_{\tau_{2}}=\mathcal{E}_{\tau_{2}}({\mathbb{C}}),\quad z+%\Lambda_{\tau_{1}}\mapsto uz+\Lambda_{\tau_{2}}.caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( blackboard_C ) = blackboard_C / roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT β†’ blackboard_C / roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ( blackboard_C ) , italic_z + roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ↦ italic_u italic_z + roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

If uβ‰ 0𝑒0u\neq 0italic_u β‰  0 then Ο•usubscriptitalic-ϕ𝑒\phi_{u}italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT is an isogeny,whose degree coincides with the index [Λτ2:u⁒(Λτ1)]delimited-[]:subscriptΞ›subscript𝜏2𝑒subscriptΞ›subscript𝜏1[\Lambda_{\tau_{2}}:u(\Lambda_{\tau_{1}})][ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT : italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ] of the subgroupu⁒(Λτ1)𝑒subscriptΞ›subscript𝜏1u(\Lambda_{\tau_{1}})italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) in Λτ2subscriptΞ›subscript𝜏2\Lambda_{\tau_{2}}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT [6, p. 9]. In particular, if

Λτ2=u⁒(Λτ1)subscriptΞ›subscript𝜏2𝑒subscriptΞ›subscript𝜏1\Lambda_{\tau_{2}}=u(\Lambda_{\tau_{1}})roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT )

(i.e., the index is 1111), Ο•usubscriptitalic-ϕ𝑒\phi_{u}italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT is an isomorphism of elliptic curves β„°Ο„1subscriptβ„°subscript𝜏1\mathcal{E}_{\tau_{1}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and β„°Ο„2subscriptβ„°subscript𝜏2\mathcal{E}_{\tau_{2}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT.

On the other hand, if w take Ο„1=Ο„2=Ο„subscript𝜏1subscript𝜏2𝜏\tau_{1}=\tau_{2}=\tauitalic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_Ο„ and put

OΟ„:={uβˆˆβ„‚βˆ£u⁒(Λτ)βŠ‚Ξ›Ο„},assignsubscriptπ‘‚πœconditional-set𝑒ℂ𝑒subscriptΞ›πœsubscriptΞ›πœO_{\tau}:=\{u\in{\mathbb{C}}\mid u(\Lambda_{\tau})\subset\Lambda_{\tau}\},italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT := { italic_u ∈ blackboard_C ∣ italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT } ,(4)

then the map

OΟ„β†’End⁒(β„°Ο„),u↦ϕuformulae-sequenceβ†’subscriptπ‘‚πœEndsubscriptβ„°πœmaps-to𝑒subscriptitalic-ϕ𝑒O_{\tau}\to\mathrm{End}(\mathcal{E}_{\tau}),\ u\mapsto\phi_{u}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT β†’ roman_End ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) , italic_u ↦ italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT(5)

is a ring isomorphism.

Remark 3.3.

We have

β„€βŠ‚OΟ„,Ξ›Ο„βŠƒOΟ„β‹…1=OΟ„βŠ‚β„‚,formulae-sequenceβ„€subscriptπ‘‚πœsuperset-ofsubscriptΞ›πœβ‹…subscriptπ‘‚πœ1subscriptπ‘‚πœβ„‚{\mathbb{Z}}\subset O_{\tau},\quad\Lambda_{\tau}\supset O_{\tau}\cdot 1=O_{%\tau}\subset{\mathbb{C}},blackboard_Z βŠ‚ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT , roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠƒ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT β‹… 1 = italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ blackboard_C ,

i.e.,

β„€βŠ‚OΟ„βŠ‚Ξ›Ο„βŠ‚β„‚.β„€subscriptπ‘‚πœsubscriptΞ›πœβ„‚{\mathbb{Z}}\subset O_{\tau}\subset\Lambda_{\tau}\subset{\mathbb{C}}.blackboard_Z βŠ‚ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ blackboard_C .(6)

It follows easily that if ΛτsubscriptΞ›πœ\Lambda_{\tau}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is a subring of β„‚β„‚{\mathbb{C}}blackboard_C then OΟ„=Λτsubscriptπ‘‚πœsubscriptΞ›πœO_{\tau}=\Lambda_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT.

Remark 3.4.
  • (i)

    It is well known [9, Ch. 4, Sect. 4.4, Prop. 4.5] that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT has CM if and only if Ο„πœ\tauitalic_Ο„ is an (imaginary) quadratic irrationality,i.e., β„šβ’(Ο„)=β„š+β„šβ’Ο„β„šπœβ„šβ„šπœ{\mathbb{Q}}(\tau)={\mathbb{Q}}+{\mathbb{Q}}\taublackboard_Q ( italic_Ο„ ) = blackboard_Q + blackboard_Q italic_Ο„ is an imaginary quadratic field. If this is the case thenOΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is an order in the imaginary quadratic field β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ); in particular,

    OΟ„={uβˆˆβ„š(Ο„)∣u(Λτ)βŠ‚Ξ›Ο„.O_{\tau}=\{u\in{\mathbb{Q}}(\tau)\mid u(\Lambda_{\tau})\subset\Lambda_{\tau}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = { italic_u ∈ blackboard_Q ( italic_Ο„ ) ∣ italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT .(7)

    In addition, extending isomorphism (5) by β„šβ„š{\mathbb{Q}}blackboard_Q-linearity,we get a canonical isomorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-algebras

    β„šβ’(Ο„)=OΟ„βŠ—β„š=β„šβ’(Ο„)β†’End⁒(β„°Ο„)βŠ—β„š=End0⁒(β„°Ο„),uβŠ—r↦ϕuβŠ—rformulae-sequenceβ„šπœtensor-productsubscriptπ‘‚πœβ„šβ„šπœβ†’tensor-productEndsubscriptβ„°πœβ„šsuperscriptEnd0subscriptβ„°πœmaps-totensor-productπ‘’π‘Ÿtensor-productsubscriptitalic-Ο•π‘’π‘Ÿ{\mathbb{Q}}(\tau)=O_{\tau}\otimes{\mathbb{Q}}={\mathbb{Q}}(\tau)\to\mathrm{%End}(\mathcal{E}_{\tau})\otimes{\mathbb{Q}}=\mathrm{End}^{0}(\mathcal{E}_{\tau%}),\quad u\otimes r\mapsto\phi_{u}\otimes rblackboard_Q ( italic_Ο„ ) = italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ— blackboard_Q = blackboard_Q ( italic_Ο„ ) β†’ roman_End ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ— blackboard_Q = roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) , italic_u βŠ— italic_r ↦ italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT βŠ— italic_r

    between β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ) and the endomorphism algebra End0⁒(β„°Ο„)superscriptEnd0subscriptβ„°πœ\mathrm{End}^{0}(\mathcal{E}_{\tau})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) of β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT.

  • (ii)

    Suppose that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT has CM, i.e., β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ) is an imaginary quadratic field. In light of (6),

    β„€βŠ‚OΟ„βŠ‚Ξ›Ο„=℀⁒τ+β„€βŠ‚β„šβ’(Ο„).β„€subscriptπ‘‚πœsubscriptΞ›πœβ„€πœβ„€β„šπœ{\mathbb{Z}}\subset O_{\tau}\subset\Lambda_{\tau}={\mathbb{Z}}\tau+{\mathbb{Z}%}\subset{\mathbb{Q}}(\tau).blackboard_Z βŠ‚ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z italic_Ο„ + blackboard_Z βŠ‚ blackboard_Q ( italic_Ο„ ) .(8)

    It follows from Remark 3.3 that if ΛτsubscriptΞ›πœ\Lambda_{\tau}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is an order in β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ) then

    OΟ„=Λτ.subscriptπ‘‚πœsubscriptΞ›πœO_{\tau}=\Lambda_{\tau}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT .
  • (ii)

    Let β„°Ο„1subscriptβ„°subscript𝜏1\mathcal{E}_{\tau_{1}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and β„°Ο„2subscriptβ„°subscript𝜏2\mathcal{E}_{\tau_{2}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT be two elliptic curves with complex multiplication. Then β„°Ο„1subscriptβ„°subscript𝜏1\mathcal{E}_{\tau_{1}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and β„°Ο„2subscriptβ„°subscript𝜏2\mathcal{E}_{\tau_{2}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPTare isogenous if and only if the corresponding imaginary quadratic fields coincide, i.e.,

    β„šβ’(Ο„1)=β„šβ’(Ο„2)β„šsubscript𝜏1β„šsubscript𝜏2{\mathbb{Q}}(\tau_{1})={\mathbb{Q}}(\tau_{2})blackboard_Q ( italic_Ο„ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = blackboard_Q ( italic_Ο„ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT )

    (see [9, Ch. 4, Sect. 4.4, Prop. 4.9]).

The group GL2⁒(ℝ)+subscriptGL2superscriptℝ\mathrm{GL}_{2}({\mathbb{R}})^{+}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT of two-by-two real matrices with positive determinant acts transitively on β„Œβ„Œ\mathfrak{H}fraktur_Hby fractional-linear transformations. Namely, the continuous map

M,τ↦M⁒(Ο„)=a⁒τ+bc⁒τ+dβˆ€Ο„βˆˆβ„Œ,M=(abcd)∈GL2⁒(ℝ)+.formulae-sequencemaps-toπ‘€πœπ‘€πœπ‘Žπœπ‘π‘πœπ‘‘formulae-sequencefor-allπœβ„Œπ‘€matrixπ‘Žπ‘π‘π‘‘subscriptGL2superscriptℝM,\tau\mapsto M(\tau)=\frac{a\tau+b}{c\tau+d}\quad\forall\tau\in\mathfrak{H},%\ M=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathrm{GL}_{2}({\mathbb{R}})^{+}.italic_M , italic_Ο„ ↦ italic_M ( italic_Ο„ ) = divide start_ARG italic_a italic_Ο„ + italic_b end_ARG start_ARG italic_c italic_Ο„ + italic_d end_ARG βˆ€ italic_Ο„ ∈ fraktur_H , italic_M = ( start_ARG start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARG ) ∈ roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .

defines the transitive action of GL2⁒(ℝ)+subscriptGL2superscriptℝ\mathrm{GL}_{2}({\mathbb{R}})^{+}roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT on β„Œβ„Œ\mathfrak{H}fraktur_H.(Actually, even the action of the subgroup SL⁒(2,ℝ)SL2ℝ\mathrm{SL}(2,{\mathbb{R}})roman_SL ( 2 , blackboard_R ) on β„Œβ„Œ\mathfrak{H}fraktur_H is transitive.) We will mostly deal with the action of the subgroup

G:=GL⁒(2,β„€(2))+={M∈GL⁒(2,β„€(2))∣det(M)>0}βŠ‚GL2⁒(ℝ)+.assign𝐺GLsuperscript2subscriptβ„€2conditional-set𝑀GL2subscriptβ„€2𝑀0subscriptGL2superscriptℝG:=\mathrm{GL}(2,{\mathbb{Z}}_{(2)})^{+}=\{M\in\mathrm{GL}(2,{\mathbb{Z}}_{(2)%})\mid\det(M)>0\}\subset\mathrm{GL}_{2}({\mathbb{R}})^{+}.italic_G := roman_GL ( 2 , blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = { italic_M ∈ roman_GL ( 2 , blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) ∣ roman_det ( italic_M ) > 0 } βŠ‚ roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT .
Lemma 3.5.

Suppose that a matrix

M=(abcd)∈GL2⁒(β„€(2))𝑀matrixπ‘Žπ‘π‘π‘‘subscriptGL2subscriptβ„€2M=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathrm{GL}_{2}({\mathbb{Z}}_{(2)})italic_M = ( start_ARG start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARG ) ∈ roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT )

has positive determinant

det(M)=a⁒dβˆ’b⁒cβˆˆβ„€(2)βˆ—,π‘€π‘Žπ‘‘π‘π‘superscriptsubscriptβ„€2\det(M)=ad-bc\in{\mathbb{Z}}_{(2)}^{*},roman_det ( italic_M ) = italic_a italic_d - italic_b italic_c ∈ blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT ,

i.e, M∈G𝑀𝐺M\in Gitalic_M ∈ italic_G.Then there exists an isogeny EM⁒(Ο„)β†’β„°Ο„β†’subscriptπΈπ‘€πœsubscriptβ„°πœE_{M(\tau)}\to\mathcal{E}_{\tau}italic_E start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT β†’ caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT of odd degree.

Proof.

By definition of β„€(2)subscriptβ„€2{\mathbb{Z}}_{(2)}blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT, there are integers a~,b~,c~,d~~π‘Ž~𝑏~𝑐~𝑑\tilde{a},\tilde{b},\tilde{c},\tilde{d}over~ start_ARG italic_a end_ARG , over~ start_ARG italic_b end_ARG , over~ start_ARG italic_c end_ARG , over~ start_ARG italic_d end_ARG,and a positive odd integer n𝑛nitalic_n such that

a=a~/n,b=b~/n,c=c~/n,d=d~/n.formulae-sequenceπ‘Ž~π‘Žπ‘›formulae-sequence𝑏~𝑏𝑛formulae-sequence𝑐~𝑐𝑛𝑑~𝑑𝑛a=\tilde{a}/n,\ b=\tilde{b}/n,\ c=\tilde{c}/n,\ d=\tilde{d}/n.italic_a = over~ start_ARG italic_a end_ARG / italic_n , italic_b = over~ start_ARG italic_b end_ARG / italic_n , italic_c = over~ start_ARG italic_c end_ARG / italic_n , italic_d = over~ start_ARG italic_d end_ARG / italic_n .

The conditions on det(M)𝑀\det(M)roman_det ( italic_M ) imply that a~⁒d~βˆ’b~⁒c~~π‘Ž~𝑑~𝑏~𝑐\tilde{a}\tilde{d}-\tilde{b}\tilde{c}over~ start_ARG italic_a end_ARG over~ start_ARG italic_d end_ARG - over~ start_ARG italic_b end_ARG over~ start_ARG italic_c end_ARG is a positive odd integer.Then

M⁒(Ο„)=a⁒τ+bc⁒τ+d=a~⁒τ+b~c~⁒τ+d~=M~⁒(Ο„)π‘€πœπ‘Žπœπ‘π‘πœπ‘‘~π‘Žπœ~𝑏~π‘πœ~𝑑~π‘€πœM(\tau)=\frac{a\tau+b}{c\tau+d}=\frac{\tilde{a}\tau+\tilde{b}}{\tilde{c}\tau+%\tilde{d}}=\tilde{M}(\tau)italic_M ( italic_Ο„ ) = divide start_ARG italic_a italic_Ο„ + italic_b end_ARG start_ARG italic_c italic_Ο„ + italic_d end_ARG = divide start_ARG over~ start_ARG italic_a end_ARG italic_Ο„ + over~ start_ARG italic_b end_ARG end_ARG start_ARG over~ start_ARG italic_c end_ARG italic_Ο„ + over~ start_ARG italic_d end_ARG end_ARG = over~ start_ARG italic_M end_ARG ( italic_Ο„ )

where the matrix

M~=(a~b~c~d~).~𝑀matrix~π‘Ž~𝑏~𝑐~𝑑\tilde{M}=\begin{pmatrix}\tilde{a}&\tilde{b}\\\tilde{c}&\tilde{d}\end{pmatrix}.over~ start_ARG italic_M end_ARG = ( start_ARG start_ROW start_CELL over~ start_ARG italic_a end_ARG end_CELL start_CELL over~ start_ARG italic_b end_ARG end_CELL end_ROW start_ROW start_CELL over~ start_ARG italic_c end_ARG end_CELL start_CELL over~ start_ARG italic_d end_ARG end_CELL end_ROW end_ARG ) .

(Since

a~⁒d~βˆ’b~⁒c~=det(M~)=1n2⁒det(M)>0,~π‘Ž~𝑑~𝑏~𝑐~𝑀1superscript𝑛2𝑀0\tilde{a}\tilde{d}-\tilde{b}\tilde{c}=\det(\tilde{M})=\frac{1}{n^{2}}\det(M)>0,over~ start_ARG italic_a end_ARG over~ start_ARG italic_d end_ARG - over~ start_ARG italic_b end_ARG over~ start_ARG italic_c end_ARG = roman_det ( over~ start_ARG italic_M end_ARG ) = divide start_ARG 1 end_ARG start_ARG italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG roman_det ( italic_M ) > 0 ,

we get

M~∈GL(2,β„€(2))+βŠ‚GL2(ℝ)+.)\tilde{M}\in\mathrm{GL}(2,{\mathbb{Z}}_{(2)})^{+}\subset\mathrm{GL}_{2}({%\mathbb{R}})^{+}.)over~ start_ARG italic_M end_ARG ∈ roman_GL ( 2 , blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT βŠ‚ roman_GL start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT . )

We have

Ξ›M⁒(Ο„)=Ξ›M~⁒(Ο„)=[a~⁒τ+b~c~⁒τ+d~, 1].subscriptΞ›π‘€πœsubscriptΞ›~π‘€πœ~π‘Žπœ~𝑏~π‘πœ~𝑑1\Lambda_{M(\tau)}=\Lambda_{\tilde{M}(\tau)}=\left[\frac{\tilde{a}\tau+\tilde{b%}}{\tilde{c}\tau+\tilde{d}},\ 1\right].roman_Ξ› start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT = roman_Ξ› start_POSTSUBSCRIPT over~ start_ARG italic_M end_ARG ( italic_Ο„ ) end_POSTSUBSCRIPT = [ divide start_ARG over~ start_ARG italic_a end_ARG italic_Ο„ + over~ start_ARG italic_b end_ARG end_ARG start_ARG over~ start_ARG italic_c end_ARG italic_Ο„ + over~ start_ARG italic_d end_ARG end_ARG , 1 ] .

This means that

(c~⁒τ+d~)⁒ΛM⁒(Ο„)=[a~⁒τ+b~,c~⁒τ+d~]~π‘πœ~𝑑subscriptΞ›π‘€πœ~π‘Žπœ~𝑏~π‘πœ~𝑑(\tilde{c}\tau+\tilde{d})\Lambda_{M(\tau)}=[\tilde{a}\tau+\tilde{b},\ \tilde{c%}\tau+\tilde{d}]( over~ start_ARG italic_c end_ARG italic_Ο„ + over~ start_ARG italic_d end_ARG ) roman_Ξ› start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT = [ over~ start_ARG italic_a end_ARG italic_Ο„ + over~ start_ARG italic_b end_ARG , over~ start_ARG italic_c end_ARG italic_Ο„ + over~ start_ARG italic_d end_ARG ]

is a subgroup in [Ο„,1]=Ξ›Ο„πœ1subscriptΞ›πœ[\tau,1]=\Lambda_{\tau}[ italic_Ο„ , 1 ] = roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT of odd index a~⁒d~βˆ’b~⁒c~~π‘Ž~𝑑~𝑏~𝑐\tilde{a}\tilde{d}-\tilde{b}\tilde{c}over~ start_ARG italic_a end_ARG over~ start_ARG italic_d end_ARG - over~ start_ARG italic_b end_ARG over~ start_ARG italic_c end_ARG.This implies that if we put

u:=c~⁒τ+d~βˆˆβ„‚,k:=a~⁒d~βˆ’b~⁒c~formulae-sequenceassign𝑒~π‘πœ~𝑑ℂassignπ‘˜~π‘Ž~𝑑~𝑏~𝑐u:=\tilde{c}\tau+\tilde{d}\in{\mathbb{C}},\quad k:=\tilde{a}\tilde{d}-\tilde{b%}\tilde{c}italic_u := over~ start_ARG italic_c end_ARG italic_Ο„ + over~ start_ARG italic_d end_ARG ∈ blackboard_C , italic_k := over~ start_ARG italic_a end_ARG over~ start_ARG italic_d end_ARG - over~ start_ARG italic_b end_ARG over~ start_ARG italic_c end_ARG

thenu⁒(Ξ›M⁒(Ο„))𝑒subscriptΞ›π‘€πœu\left(\Lambda_{M(\tau)}\right)italic_u ( roman_Ξ› start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT ) is a subgroup of odd index kπ‘˜kitalic_k in ΛτsubscriptΞ›πœ\Lambda_{\tau}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. This gives us the isogenyΟ•u:EM⁒(Ο„)β†’β„°Ο„:subscriptitalic-ϕ𝑒→subscriptπΈπ‘€πœsubscriptβ„°πœ\phi_{u}:E_{M(\tau)}\to\mathcal{E}_{\tau}italic_Ο• start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT : italic_E start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT β†’ caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT of odd degree kπ‘˜kitalic_k. This ends the proof.∎

Proof of Proposition 2.1.

Let B∈GL⁒(2,ℝ)+𝐡GLsuperscript2ℝB\in\mathrm{GL}(2,{\mathbb{R}})^{+}italic_B ∈ roman_GL ( 2 , blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT. The weak approximation for the field β„šβ„š{\mathbb{Q}}blackboard_Q [1, Th. 1] with respect to places {∞, 2}2\{\infty,\ 2\}{ ∞ , 2 }implies the existence of a sequence {Bn}subscript𝐡𝑛\{B_{n}\}{ italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } of 2Γ—2222\times 22 Γ— 2 matrices with rational entries such that{Bn}subscript𝐡𝑛\{B_{n}\}{ italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } converges to B𝐡Bitalic_B in the real topology and to the identity matrix(1001)matrix1001\begin{pmatrix}1&0\\0&1\end{pmatrix}( start_ARG start_ROW start_CELL 1 end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL 1 end_CELL end_ROW end_ARG )in the 2222-adic topology. Removing first finite terms of the sequence, we may and will assume that for all n𝑛nitalic_n

Bn∈GL⁒(2,β„€(2))βŠ‚GL⁒(2,β„š),det(Bn)>0;formulae-sequencesubscript𝐡𝑛GL2subscriptβ„€2GL2β„šsubscript𝐡𝑛0B_{n}\in\mathrm{GL}(2,{\mathbb{Z}}_{(2)})\subset\mathrm{GL}(2,{\mathbb{Q}}),%\quad\det(B_{n})>0;italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ roman_GL ( 2 , blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) βŠ‚ roman_GL ( 2 , blackboard_Q ) , roman_det ( italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) > 0 ;

the latter inequality means that all Bn∈GL(2.ℝ)+B_{n}\in\mathrm{GL}(2.{\mathbb{R}})^{+}italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ roman_GL ( 2 . blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT and therefore

Bn∈GL⁒(2,β„€(2))+=G.subscript𝐡𝑛GLsuperscript2subscriptβ„€2𝐺B_{n}\in\mathrm{GL}(2,{\mathbb{Z}}_{(2)})^{+}=G.italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ∈ roman_GL ( 2 , blackboard_Z start_POSTSUBSCRIPT ( 2 ) end_POSTSUBSCRIPT ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT = italic_G .

It follows that B⁒(Ο„)βˆˆβ„Œπ΅πœβ„ŒB(\tau)\in\mathfrak{H}italic_B ( italic_Ο„ ) ∈ fraktur_H is the limit of the sequence

Bn⁒(Ο„)βˆˆβ„Œsubscriptπ΅π‘›πœβ„ŒB_{n}(\tau)\in\mathfrak{H}italic_B start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ( italic_Ο„ ) ∈ fraktur_H

in the complex topology. Now the transitivity of GL⁒(2,ℝ)+GLsuperscript2ℝ\mathrm{GL}(2,{\mathbb{R}})^{+}roman_GL ( 2 , blackboard_R ) start_POSTSUPERSCRIPT + end_POSTSUPERSCRIPT implies thatevery orbitG⁒τ={M⁒(Ο„)∣M∈G}𝐺𝜏conditional-setπ‘€πœπ‘€πΊG\tau=\{M(\tau)\mid M\in G\}italic_G italic_Ο„ = { italic_M ( italic_Ο„ ) ∣ italic_M ∈ italic_G } is dense in β„‹β„‹\mathcal{H}caligraphic_Hin the complex topology.

Recall that the classical holomorphic (hence, continuous) modular function

j:β„Œβ†’β„‚:π‘—β†’β„Œβ„‚j:\mathfrak{H}\to{\mathbb{C}}italic_j : fraktur_H β†’ blackboard_C

takes on every complex value. It follows that for every Ο„πœ\tauitalic_Ο„ the set{j⁒(M⁒(Ο„))∣M∈G}conditional-setπ‘—π‘€πœπ‘€πΊ\{j(M(\tau))\mid M\in G\}{ italic_j ( italic_M ( italic_Ο„ ) ) ∣ italic_M ∈ italic_G } is dense in β„‚β„‚{\mathbb{C}}blackboard_C.

Let E𝐸Eitalic_E be an elliptic curve with complex multiplication. Then there exists Ο„βˆˆH𝜏𝐻\tau\in Hitalic_Ο„ ∈ italic_H such thatthe elliptic curves E𝐸Eitalic_E and β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT are isomorphic and therefore

j⁒(E)=j⁒(β„°Ο„)=j⁒(Ο„).𝑗𝐸𝑗subscriptβ„°πœπ‘—πœj(E)=j(\mathcal{E}_{\tau})=j(\tau).italic_j ( italic_E ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) = italic_j ( italic_Ο„ ) .

In light of Lemma 3.5, if M∈G𝑀𝐺M\in Gitalic_M ∈ italic_G then there is anisogeny EM⁒(Ο„)β†’Eβ†’subscriptπΈπ‘€πœπΈE_{M(\tau)}\to Eitalic_E start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT β†’ italic_E of odd degree. Since

j⁒(EM⁒(Ο„))=j⁒(M⁒(Ο„)),𝑗subscriptπΈπ‘€πœπ‘—π‘€πœj(E_{M(\tau)})=j(M(\tau)),italic_j ( italic_E start_POSTSUBSCRIPT italic_M ( italic_Ο„ ) end_POSTSUBSCRIPT ) = italic_j ( italic_M ( italic_Ο„ ) ) ,

the set JE,issubscript𝐽𝐸isJ_{E,\mathrm{is}}italic_J start_POSTSUBSCRIPT italic_E , roman_is end_POSTSUBSCRIPT of complex numbers contains{j⁒(M⁒(Ο„))∣M∈G}conditional-setπ‘—π‘€πœπ‘€πΊ\{j(M(\tau))\mid M\in G\}{ italic_j ( italic_M ( italic_Ο„ ) ) ∣ italic_M ∈ italic_G }, which is dense in β„‚β„‚{\mathbb{C}}blackboard_C. Hence, JE,issubscript𝐽𝐸isJ_{E,\mathrm{is}}italic_J start_POSTSUBSCRIPT italic_E , roman_is end_POSTSUBSCRIPT is also dense in β„‚β„‚{\mathbb{C}}blackboard_C,which ends the proof.∎

Example 3.6.

Let Ο„βˆˆβ„Œπœβ„Œ\tau\in\mathfrak{H}italic_Ο„ ∈ fraktur_H. Let n,mπ‘›π‘šn,mitalic_n , italic_m be positive odd integers.Then the matrix

M=(m00n)𝑀matrixπ‘š00𝑛M=\begin{pmatrix}m&0\\0&n\end{pmatrix}italic_M = ( start_ARG start_ROW start_CELL italic_m end_CELL start_CELL 0 end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_n end_CELL end_ROW end_ARG )

satisfies the conditions of Lemma 3.5. We have

M⁒(Ο„)=mn⁒τ.π‘€πœπ‘šπ‘›πœM(\tau)=\frac{m}{n}\tau.italic_M ( italic_Ο„ ) = divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_Ο„ .

It follows from Lemma 3.5 that there exists an isogenyEmn⁒τ→ℰτ→subscriptπΈπ‘šπ‘›πœsubscriptβ„°πœE_{\frac{m}{n}\tau}\to\mathcal{E}_{\tau}italic_E start_POSTSUBSCRIPT divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_Ο„ end_POSTSUBSCRIPT β†’ caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPTof odd degree.This implies that if Ο„πœ\tauitalic_Ο„ is an imaginary quadratic irrationality then, by Proposition 1.4 (to be proven in Section 6),the CM elliptic curves Emn⁒τsubscriptπΈπ‘šπ‘›πœE_{\frac{m}{n}\tau}italic_E start_POSTSUBSCRIPT divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_Ο„ end_POSTSUBSCRIPT and β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT have the same parity.

Example 3.7.

Let Ο„=1+𝐒⁒y2βˆˆβ„Œπœ1𝐒𝑦2β„Œ\tau=\frac{1+\mathbf{i}y}{2}\in\mathfrak{H}italic_Ο„ = divide start_ARG 1 + bold_i italic_y end_ARG start_ARG 2 end_ARG ∈ fraktur_H where yβˆˆβ„+𝑦subscriptℝy\in{\mathbb{R}}_{+}italic_y ∈ blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT. Let n,mπ‘›π‘šn,mitalic_n , italic_m be positive odd integers. Let us put

Ο„m,n:=1+𝐒⁒mn⁒y2βˆˆβ„Œ.assignsubscriptπœπ‘šπ‘›1π’π‘šπ‘›π‘¦2β„Œ\tau_{m,n}:=\frac{1+\mathbf{i}\frac{m}{n}y}{2}\in\mathfrak{H}.italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT := divide start_ARG 1 + bold_i divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y end_ARG start_ARG 2 end_ARG ∈ fraktur_H .

Notice that nβˆ’mπ‘›π‘šn-mitalic_n - italic_m is even and therefore nβˆ’m2βˆˆβ„€π‘›π‘š2β„€\frac{n-m}{2}\in{\mathbb{Z}}divide start_ARG italic_n - italic_m end_ARG start_ARG 2 end_ARG ∈ blackboard_Z.Then the matrix

M=(mnβˆ’m20n)𝑀matrixπ‘šπ‘›π‘š20𝑛M=\begin{pmatrix}m&\frac{n-m}{2}\\0&n\end{pmatrix}italic_M = ( start_ARG start_ROW start_CELL italic_m end_CELL start_CELL divide start_ARG italic_n - italic_m end_ARG start_ARG 2 end_ARG end_CELL end_ROW start_ROW start_CELL 0 end_CELL start_CELL italic_n end_CELL end_ROW end_ARG )

satisfies the conditions of Lemma 3.5. We have

M⁒(Ο„)=mβ‹…1+𝐒⁒y2⁒n+nβˆ’m2⁒n=n2⁒n+m⋅𝐒⁒y2⁒n=1+𝐒⁒mn⁒y2=Ο„m,n.π‘€πœβ‹…π‘š1𝐒𝑦2π‘›π‘›π‘š2𝑛𝑛2π‘›β‹…π‘šπ’π‘¦2𝑛1π’π‘šπ‘›π‘¦2subscriptπœπ‘šπ‘›M(\tau)=m\cdot\frac{1+\mathbf{i}y}{2n}+\frac{n-m}{2n}=\frac{n}{2n}+m\cdot\frac%{\mathbf{i}y}{2n}=\frac{1+\mathbf{i}\frac{m}{n}y}{2}=\tau_{m,n}.italic_M ( italic_Ο„ ) = italic_m β‹… divide start_ARG 1 + bold_i italic_y end_ARG start_ARG 2 italic_n end_ARG + divide start_ARG italic_n - italic_m end_ARG start_ARG 2 italic_n end_ARG = divide start_ARG italic_n end_ARG start_ARG 2 italic_n end_ARG + italic_m β‹… divide start_ARG bold_i italic_y end_ARG start_ARG 2 italic_n end_ARG = divide start_ARG 1 + bold_i divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y end_ARG start_ARG 2 end_ARG = italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT .

It follows from Lemma 3.5 that there exists an isogenyβ„°Ο„m,nβ†’β„°Ο„β†’subscriptβ„°subscriptπœπ‘šπ‘›subscriptβ„°πœ\mathcal{E}_{\tau_{m,n}}\to\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT β†’ caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPTof odd degree.By Proposition 1.4 (to be proven in Section 6), if Ο„πœ\tauitalic_Ο„ is an imaginary quadratic irrationality then the CM elliptic curves β„°Ο„m,nsubscriptβ„°subscriptπœπ‘šπ‘›\mathcal{E}_{\tau_{m,n}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT and β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT have the same parity.

In what follows, if D𝐷Ditalic_D is a negative real number then we write D𝐷\sqrt{D}square-root start_ARG italic_D end_ARG for |D|β‹…π’βˆˆβ„Œβ‹…π·π’β„Œ\sqrt{|D|}\cdot\mathbf{i}\in\mathfrak{H}square-root start_ARG | italic_D | end_ARG β‹… bold_i ∈ fraktur_H.

Example 3.8.

If Ο„πœ\tauitalic_Ο„ is a point in β„Œβ„Œ\mathfrak{H}fraktur_H such that β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ) is an imaginary quadratic field and the lattice ΛτsubscriptΞ›πœ\Lambda_{\tau}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is an order in β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ )then OΟ„=Λτsubscriptπ‘‚πœsubscriptΞ›πœO_{\tau}=\Lambda_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. E.g., let D𝐷Ditalic_D be a negative integer that is congruent to 1111 modulo 4444 and

Ο„=1+D2βˆˆβ„Œ.𝜏1𝐷2β„Œ\tau=\frac{1+\sqrt{D}}{2}\in\mathfrak{H}.italic_Ο„ = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ fraktur_H .

ThenΛτ=β„€+℀⁒1+D2subscriptΞ›πœβ„€β„€1𝐷2\Lambda_{\tau}={\mathbb{Z}}+{\mathbb{Z}}\frac{1+\sqrt{D}}{2}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG is an order in the imaginary quadratic field β„šβ’(Ο„)=β„šβ’(D)β„šπœβ„šπ·{\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{D})blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ).By Remark 3.4(ii),

OΟ„=Λτ=β„€+℀⁒1+D2.subscriptπ‘‚πœsubscriptΞ›πœβ„€β„€1𝐷2O_{\tau}=\Lambda_{\tau}={\mathbb{Z}}+{\mathbb{Z}}\frac{1+\sqrt{D}}{2}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG .

It follows from Lemma 1.1 thatOΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPTis an odd order in the quadratic field β„šβ’(D)=β„šβ’(Ο„)β‰…End0⁒(β„°Ο„)β„šπ·β„šπœsuperscriptEnd0subscriptβ„°πœ{\mathbb{Q}}(\sqrt{D})={\mathbb{Q}}(\tau)\cong\mathrm{End}^{0}(\mathcal{E}_{%\tau})blackboard_Q ( square-root start_ARG italic_D end_ARG ) = blackboard_Q ( italic_Ο„ ) β‰… roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ). This means that the elliptic curve β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd.

Now let n,mπ‘›π‘šn,mitalic_n , italic_m be any positive odd integers. Let us consider the complex numbers

Ο„m,n⁒(D)=1+𝐒⁒mn⁒|D|2=1+mn⁒D2βˆˆβ„Œ.subscriptπœπ‘šπ‘›π·1π’π‘šπ‘›π·21π‘šπ‘›π·2β„Œ\tau_{m,n}(D)=\frac{1+\mathbf{i}\frac{m}{n}\sqrt{|D|}}{2}=\frac{1+\frac{m}{n}%\sqrt{D}}{2}\in\mathfrak{H}.italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT ( italic_D ) = divide start_ARG 1 + bold_i divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 + divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ fraktur_H .(9)

It follows from Example 3.7 (applied to y=|D|𝑦𝐷y=\sqrt{|D|}italic_y = square-root start_ARG | italic_D | end_ARG) that all the elliptic curves β„°Ο„n,m⁒(D)subscriptβ„°subscriptπœπ‘›π‘šπ·\mathcal{E}_{\tau_{n,m}(D)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_n , italic_m end_POSTSUBSCRIPT ( italic_D ) end_POSTSUBSCRIPT are also odd.

Lemma 3.9 (Key Lemma).

Let Ο„βˆˆβ„Œπœβ„Œ\tau\in\mathfrak{H}italic_Ο„ ∈ fraktur_H such that β„šβ’(Ο„)β„šπœ{\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ ) is an imaginaryquadratic field, i.e., β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is an elliptic curve with CM.

  • (i)

    If Re⁒(Ο„)=0Re𝜏0\mathrm{Re}(\tau)=0roman_Re ( italic_Ο„ ) = 0 then β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is even.

  • (ii)

    Suppose that Re⁒(Ο„)=1/2Re𝜏12\mathrm{Re}(\tau)=1/2roman_Re ( italic_Ο„ ) = 1 / 2. Let D𝐷Ditalic_D be a negative integer such thatβ„šβ’(Ο„)=β„šβ’(D)β„šπœβ„šπ·{\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{D})blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) and D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ).Then

    1+D2∈OΟ„1𝐷2subscriptπ‘‚πœ\frac{1+\sqrt{D}}{2}\in O_{\tau}divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT(10)

    if and only if there is a positive odd integer β𝛽\betaitalic_Ξ² such thatβ𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D and

    Ο„=1/2+12⁒β⁒D.𝜏1212𝛽𝐷\tau=1/2+\frac{1}{2\beta}\sqrt{D}.italic_Ο„ = 1 / 2 + divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG square-root start_ARG italic_D end_ARG .

    If this is the case then β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd.

Proof.

(i). Assume that Re⁒(Ο„)=0Re𝜏0\mathrm{Re}(\tau)=0roman_Re ( italic_Ο„ ) = 0. Suppose that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd, i.e., the order OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd. It followsfrom Lemma 1.1that there is a negative integer

D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 )

such that

1+D2∈OΟ„βŠ‚K=β„šβ’(D)=β„š+β„šβ’D.1𝐷2subscriptπ‘‚πœπΎβ„šπ·β„šβ„šπ·\frac{1+\sqrt{D}}{2}\in O_{\tau}\subset K={\mathbb{Q}}(\sqrt{D})={\mathbb{Q}}+%{\mathbb{Q}}\sqrt{D}.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ italic_K = blackboard_Q ( square-root start_ARG italic_D end_ARG ) = blackboard_Q + blackboard_Q square-root start_ARG italic_D end_ARG .

Since Ο„βˆˆβ„šβ’(D)=β„š+β„šβ‹…Dπœβ„šπ·β„šβ‹…β„šπ·\tau\in{\mathbb{Q}}(\sqrt{D})={\mathbb{Q}}+{\mathbb{Q}}\cdot\sqrt{D}italic_Ο„ ∈ blackboard_Q ( square-root start_ARG italic_D end_ARG ) = blackboard_Q + blackboard_Q β‹… square-root start_ARG italic_D end_ARG and Re⁒(Ο„)=0Re𝜏0\mathrm{Re}(\tau)=0roman_Re ( italic_Ο„ ) = 0, there is a positive rational number rπ‘Ÿritalic_r such that

Ο„=r⁒D.πœπ‘Ÿπ·\tau=r\sqrt{D}.italic_Ο„ = italic_r square-root start_ARG italic_D end_ARG .

This implies that

Λτ=β„€+β„€β‹…r⁒D.subscriptΞ›πœβ„€β‹…β„€π‘Ÿπ·\Lambda_{\tau}={\mathbb{Z}}+{\mathbb{Z}}\cdot r\sqrt{D}.roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z + blackboard_Z β‹… italic_r square-root start_ARG italic_D end_ARG .

It follows from the definition of OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT (see (4)) that

1+D2⁒(Λτ)βŠ‚Ξ›Ο„.1𝐷2subscriptΞ›πœsubscriptΞ›πœ\frac{1+\sqrt{D}}{2}\Big{(}\Lambda_{\tau}\Big{)}\subset\Lambda_{\tau}.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT .

This implies that there are integers Ξ±,Ξ²βˆˆβ„€π›Όπ›½β„€\alpha,\beta\in{\mathbb{Z}}italic_Ξ± , italic_Ξ² ∈ blackboard_Z such that

1+D2β‹…1=Ξ±+β⁒r⁒D.β‹…1𝐷21π›Όπ›½π‘Ÿπ·\frac{1+\sqrt{D}}{2}\cdot 1=\alpha+\beta r\sqrt{D}.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… 1 = italic_Ξ± + italic_Ξ² italic_r square-root start_ARG italic_D end_ARG .

Taking the real parts of both sides, we get Ξ±=1/2𝛼12\alpha=1/2italic_Ξ± = 1 / 2, which contradicts the integrality of α𝛼\alphaitalic_Ξ±.The obtained contradiction proves that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is even, which proves (i).

(ii). Assume that Re⁒(Ο„)=1/2Re𝜏12\mathrm{Re}(\tau)=1/2roman_Re ( italic_Ο„ ) = 1 / 2. Recall that we are given thenegative integer D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) such that

K=β„šβ’(Ο„)=β„šβ’(D)=β„šβ‹…1βŠ•β„šβ‹…DβŠ‚β„‚.πΎβ„šπœβ„šπ·direct-sumβ‹…β„š1β‹…β„šπ·β„‚K={\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{D})={\mathbb{Q}}\cdot 1\oplus{\mathbb{%Q}}\cdot\sqrt{D}\subset{\mathbb{C}}.italic_K = blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) = blackboard_Q β‹… 1 βŠ• blackboard_Q β‹… square-root start_ARG italic_D end_ARG βŠ‚ blackboard_C .

Then there is a positive rational number rβˆˆβ„šπ‘Ÿβ„šr\in{\mathbb{Q}}italic_r ∈ blackboard_Q such that

Ο„=12+r⁒D.𝜏12π‘Ÿπ·\tau=\frac{1}{2}+r\sqrt{D}.italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + italic_r square-root start_ARG italic_D end_ARG .

It follows that

Λτ=β„€β‹…1+β„€β‹…Ο„=β„€+℀⁒(12+r⁒D)βŠ‚β„‚.subscriptΞ›πœβ‹…β„€1β‹…β„€πœβ„€β„€12π‘Ÿπ·β„‚\Lambda_{\tau}={\mathbb{Z}}\cdot 1+{\mathbb{Z}}\cdot\tau={\mathbb{Z}}+{\mathbb%{Z}}\left(\frac{1}{2}+r\sqrt{D}\right)\subset{\mathbb{C}}.roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z β‹… 1 + blackboard_Z β‹… italic_Ο„ = blackboard_Z + blackboard_Z ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG + italic_r square-root start_ARG italic_D end_ARG ) βŠ‚ blackboard_C .

By definition of OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT (see (4)),1+D2∈OΟ„1𝐷2subscriptπ‘‚πœ\frac{1+\sqrt{D}}{2}\in O_{\tau}divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT if and only if

1+D2⁒(Λτ)βŠ‚Ξ›Ο„.1𝐷2subscriptΞ›πœsubscriptΞ›πœ\frac{1+\sqrt{D}}{2}\left(\Lambda_{\tau}\right)\subset\Lambda_{\tau}.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ( roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ‚ roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT .(11)

However, since {1, 1/2+r⁒D}112π‘Ÿπ·\{1,\ 1/2+r\sqrt{D}\}{ 1 , 1 / 2 + italic_r square-root start_ARG italic_D end_ARG } is a basis of the β„šβ„š{\mathbb{Q}}blackboard_Q-vector space β„šβ’(D)β„šπ·{\mathbb{Q}}(\sqrt{D})blackboard_Q ( square-root start_ARG italic_D end_ARG ), there are certain rational numbers Ξ±,Ξ²,Ξ³,Ξ΄βˆˆβ„šπ›Όπ›½π›Ύπ›Ώβ„š\alpha,\beta,\gamma,\delta\in{\mathbb{Q}}italic_Ξ± , italic_Ξ² , italic_Ξ³ , italic_Ξ΄ ∈ blackboard_Q such that

1+D2β‹…1=Ξ±+β⁒(12+r⁒D),1+D2⁒(12+r⁒D)=Ξ³+δ⁒(12+r⁒D).formulae-sequenceβ‹…1𝐷21𝛼𝛽12π‘Ÿπ·1𝐷212π‘Ÿπ·π›Ύπ›Ώ12π‘Ÿπ·\frac{1+\sqrt{D}}{2}\cdot 1=\alpha+\beta\left(\frac{1}{2}+r\sqrt{D}\right),%\quad\frac{1+\sqrt{D}}{2}\left(\frac{1}{2}+r\sqrt{D}\right)=\gamma+\delta\left%(\frac{1}{2}+r\sqrt{D}\right).divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… 1 = italic_Ξ± + italic_Ξ² ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG + italic_r square-root start_ARG italic_D end_ARG ) , divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG + italic_r square-root start_ARG italic_D end_ARG ) = italic_Ξ³ + italic_Ξ΄ ( divide start_ARG 1 end_ARG start_ARG 2 end_ARG + italic_r square-root start_ARG italic_D end_ARG ) .(12)

The inclusion (11) is equivalent to the condition

Ξ±,Ξ²,Ξ³,Ξ΄βˆˆβ„€.𝛼𝛽𝛾𝛿℀\alpha,\beta,\gamma,\delta\in{\mathbb{Z}}.italic_Ξ± , italic_Ξ² , italic_Ξ³ , italic_Ξ΄ ∈ blackboard_Z .(13)

Opening the brackets and collecting terms in (12), we get

1+D2=(Ξ±+Ξ²/2)+β⁒r⁒D;(14+r⁒D/2)+12⁒(r+12)⁒D=(Ξ³+Ξ΄/2)+δ⁒r⁒D.formulae-sequence1𝐷2𝛼𝛽2π›½π‘Ÿπ·14π‘Ÿπ·212π‘Ÿ12𝐷𝛾𝛿2π›Ώπ‘Ÿπ·\frac{1+\sqrt{D}}{2}=\left(\alpha+\beta/2\right)+\beta r\sqrt{D};\quad\left(%\frac{1}{4}+rD/2\right)+\frac{1}{2}\left(r+\frac{1}{2}\right)\sqrt{D}=\left(%\gamma+\delta/2\right)+\delta r\sqrt{D}.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = ( italic_Ξ± + italic_Ξ² / 2 ) + italic_Ξ² italic_r square-root start_ARG italic_D end_ARG ; ( divide start_ARG 1 end_ARG start_ARG 4 end_ARG + italic_r italic_D / 2 ) + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_r + divide start_ARG 1 end_ARG start_ARG 2 end_ARG ) square-root start_ARG italic_D end_ARG = ( italic_Ξ³ + italic_Ξ΄ / 2 ) + italic_Ξ΄ italic_r square-root start_ARG italic_D end_ARG .

Taking the real parts and β€œimaginary” parts, we get

1/2=Ξ±+Ξ²/2, 1/2=β⁒r;1/4+r⁒D/2=Ξ³+Ξ΄/2;12⁒(r+1/2)=δ⁒r.formulae-sequence12𝛼𝛽2formulae-sequence12π›½π‘Ÿformulae-sequence14π‘Ÿπ·2𝛾𝛿212π‘Ÿ12π›Ώπ‘Ÿ1/2=\alpha+\beta/2,\ 1/2=\beta r;\quad 1/4+rD/2=\gamma+\delta/2;\quad\frac{1}{%2}\left(r+1/2\right)=\delta r.1 / 2 = italic_Ξ± + italic_Ξ² / 2 , 1 / 2 = italic_Ξ² italic_r ; 1 / 4 + italic_r italic_D / 2 = italic_Ξ³ + italic_Ξ΄ / 2 ; divide start_ARG 1 end_ARG start_ARG 2 end_ARG ( italic_r + 1 / 2 ) = italic_Ξ΄ italic_r .(14)

The second equality of (14) implies that

r=12⁒β,Ο„=12+12⁒β⁒D.formulae-sequenceπ‘Ÿ12π›½πœ1212𝛽𝐷r=\frac{1}{2\beta},\quad\tau=\frac{1}{2}+\frac{1}{2\beta}\sqrt{D}.italic_r = divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG , italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG square-root start_ARG italic_D end_ARG .(15)

Since rπ‘Ÿritalic_r is positive, β𝛽\betaitalic_Ξ² is also positive.

It follows from first equality of (14) that α𝛼\alphaitalic_Ξ± is an integer if and only if β𝛽\betaitalic_Ξ² is an odd integer.This implies that if β𝛽\betaitalic_Ξ² is not an odd integer then (13) does not hold. So, in the course of the proof we may and will assume that

β∈1+2⁒℀,Ξ±βˆˆβ„€.formulae-sequence𝛽12℀𝛼℀\beta\in 1+2{\mathbb{Z}},\quad\alpha\in{\mathbb{Z}}.italic_Ξ² ∈ 1 + 2 blackboard_Z , italic_Ξ± ∈ blackboard_Z .(16)

It follows from the last equality of (14) combined with (15) that

14+14⁒β=Ξ΄2⁒β,1414𝛽𝛿2𝛽\frac{1}{4}+\frac{1}{4\beta}=\frac{\delta}{2\beta},divide start_ARG 1 end_ARG start_ARG 4 end_ARG + divide start_ARG 1 end_ARG start_ARG 4 italic_Ξ² end_ARG = divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 italic_Ξ² end_ARG ,

which means that

Ξ΄=Ξ²+12.𝛿𝛽12\delta=\frac{\beta+1}{2}.italic_Ξ΄ = divide start_ARG italic_Ξ² + 1 end_ARG start_ARG 2 end_ARG .

In light of (16),

Ξ΄=Ξ²+12βˆˆβ„€.𝛿𝛽12β„€\delta=\frac{\beta+1}{2}\in{\mathbb{Z}}.italic_Ξ΄ = divide start_ARG italic_Ξ² + 1 end_ARG start_ARG 2 end_ARG ∈ blackboard_Z .(17)

In addition, δ𝛿\deltaitalic_Ξ΄ is even (resp. odd) if β≑3(mod4)𝛽annotated3moduloabsent4\beta\equiv 3(\bmod 4)italic_Ξ² ≑ 3 ( roman_mod 4 ) (resp. if β≑1(mod4)𝛽annotated1moduloabsent4\beta\equiv 1(\bmod 4)italic_Ξ² ≑ 1 ( roman_mod 4 )). This means that

Ξ΄2βˆˆβ„€β’if⁒β≑3(mod4);Ξ΄2∈12β’β„€βˆ–β„€β’if⁒β≑1(mod4).formulae-sequence𝛿2β„€if𝛽annotated3moduloabsent4𝛿212β„€β„€if𝛽annotated1moduloabsent4\frac{\delta}{2}\in{\mathbb{Z}}\ \text{if}\ \beta\equiv 3(\bmod 4);\quad\frac{%\delta}{2}\in\frac{1}{2}{\mathbb{Z}}\setminus{\mathbb{Z}}\ \text{if}\ \beta%\equiv 1(\bmod 4).divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ∈ blackboard_Z if italic_Ξ² ≑ 3 ( roman_mod 4 ) ; divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ∈ divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_Z βˆ– blackboard_Z if italic_Ξ² ≑ 1 ( roman_mod 4 ) .(18)

Now let us explore the integrality of γ𝛾\gammaitalic_Ξ³.Combining (15) with third equality of (14), we get

Ξ²+D4⁒β=14+D4⁒β=Ξ³+Ξ΄2.𝛽𝐷4𝛽14𝐷4𝛽𝛾𝛿2\frac{\beta+D}{4\beta}=\frac{1}{4}+\frac{D}{4\beta}=\gamma+\frac{\delta}{2}.divide start_ARG italic_Ξ² + italic_D end_ARG start_ARG 4 italic_Ξ² end_ARG = divide start_ARG 1 end_ARG start_ARG 4 end_ARG + divide start_ARG italic_D end_ARG start_ARG 4 italic_Ξ² end_ARG = italic_Ξ³ + divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG .(19)

Since both β𝛽\betaitalic_Ξ² and D𝐷Ditalic_D are odd integers, their sum Ξ²+D𝛽𝐷\beta+Ditalic_Ξ² + italic_D is an even integer.It follows that if the odd integer β𝛽\betaitalic_Ξ² does not divide the odd integer D𝐷Ditalic_D then Ξ³+Ξ΄/2βˆ‰12⁒℀𝛾𝛿212β„€\gamma+\delta/2\not\in\frac{1}{2}{\mathbb{Z}}italic_Ξ³ + italic_Ξ΄ / 2 βˆ‰ divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_Zand therefore (13) does not hold. So, in the course of the proof we may and will assume that

β∣D.conditional𝛽𝐷\beta\mid D.italic_Ξ² ∣ italic_D .(20)

It follows that the even integer Ξ²+D𝛽𝐷\beta+Ditalic_Ξ² + italic_D is divisible by 2⁒β2𝛽2\beta2 italic_Ξ².

Taking into account that D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ),we conclude that if β≑3(mod4)𝛽annotated3moduloabsent4\beta\equiv 3(\bmod 4)italic_Ξ² ≑ 3 ( roman_mod 4 ) then Ξ²+D𝛽𝐷\beta+Ditalic_Ξ² + italic_D is divisible by 4⁒β4𝛽4\beta4 italic_Ξ² and therefore

Ξ³+Ξ΄2=Ξ²+D4β’Ξ²βˆˆβ„€.𝛾𝛿2𝛽𝐷4𝛽℀\gamma+\frac{\delta}{2}=\frac{\beta+D}{4\beta}\in{\mathbb{Z}}.italic_Ξ³ + divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² + italic_D end_ARG start_ARG 4 italic_Ξ² end_ARG ∈ blackboard_Z .

Combining with (18), we get

Ξ΄2,Ξ³+Ξ΄2βˆˆβ„€if⁒β≑3(mod4).formulae-sequence𝛿2𝛾𝛿2β„€if𝛽annotated3moduloabsent4\frac{\delta}{2},\ \gamma+\frac{\delta}{2}\in{\mathbb{Z}}\quad\text{if}\ \beta%\equiv 3(\bmod 4).divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG , italic_Ξ³ + divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ∈ blackboard_Z if italic_Ξ² ≑ 3 ( roman_mod 4 ) .

This implies that

Ξ³=(Ξ³+Ξ΄2)βˆ’Ξ΄2βˆˆβ„€if⁒β≑3(mod4).formulae-sequence𝛾𝛾𝛿2𝛿2β„€if𝛽annotated3moduloabsent4\gamma=\left(\gamma+\frac{\delta}{2}\right)-\frac{\delta}{2}\in{\mathbb{Z}}%\quad\text{if}\ \beta\equiv 3(\bmod 4).italic_Ξ³ = ( italic_Ξ³ + divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ) - divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ∈ blackboard_Z if italic_Ξ² ≑ 3 ( roman_mod 4 ) .

On the other hand, suppose thatβ≑1(mod4)𝛽annotated1moduloabsent4\beta\equiv 1(\bmod 4)italic_Ξ² ≑ 1 ( roman_mod 4 ). Then the integer

Dβ≑1(mod4)𝐷𝛽annotated1moduloabsent4\frac{D}{\beta}\equiv 1(\bmod 4)divide start_ARG italic_D end_ARG start_ARG italic_Ξ² end_ARG ≑ 1 ( roman_mod 4 )

and therefore the integer (Ξ²+D)/β≑2(mod4)𝛽𝐷𝛽annotated2moduloabsent4(\beta+D)/\beta\equiv 2(\bmod 4)( italic_Ξ² + italic_D ) / italic_Ξ² ≑ 2 ( roman_mod 4 ),which implies that

Ξ²+D4⁒β∈12β’β„€βˆ–β„€.𝛽𝐷4𝛽12β„€β„€\frac{\beta+D}{4\beta}\in\frac{1}{2}{\mathbb{Z}}\setminus{\mathbb{Z}}.divide start_ARG italic_Ξ² + italic_D end_ARG start_ARG 4 italic_Ξ² end_ARG ∈ divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_Z βˆ– blackboard_Z .

In light of (18), Ξ΄2∈12β’β„€βˆ–β„€π›Ώ212β„€β„€\frac{\delta}{2}\in\frac{1}{2}{\mathbb{Z}}\setminus{\mathbb{Z}}divide start_ARG italic_Ξ΄ end_ARG start_ARG 2 end_ARG ∈ divide start_ARG 1 end_ARG start_ARG 2 end_ARG blackboard_Z βˆ– blackboard_Z and therefore

Ξ³=(Ξ³+Ξ΄/2)βˆ’Ξ΄/2=Ξ²+D4β’Ξ²βˆ’Ξ΄/2βˆˆβ„€if⁒β≑1(mod4).formulae-sequence𝛾𝛾𝛿2𝛿2𝛽𝐷4𝛽𝛿2β„€if𝛽annotated1moduloabsent4\gamma=(\gamma+\delta/2)-\delta/2=\frac{\beta+D}{4\beta}-\delta/2\in{\mathbb{Z%}}\quad\text{if}\ \beta\equiv 1(\bmod 4).italic_Ξ³ = ( italic_Ξ³ + italic_Ξ΄ / 2 ) - italic_Ξ΄ / 2 = divide start_ARG italic_Ξ² + italic_D end_ARG start_ARG 4 italic_Ξ² end_ARG - italic_Ξ΄ / 2 ∈ blackboard_Z if italic_Ξ² ≑ 1 ( roman_mod 4 ) .

This implies that all Ξ±,Ξ²,Ξ³,δ𝛼𝛽𝛾𝛿\alpha,\beta,\gamma,\deltaitalic_Ξ± , italic_Ξ² , italic_Ξ³ , italic_Ξ΄ are integers if and only ifr=1/2β’Ξ²π‘Ÿ12𝛽r=1/2\betaitalic_r = 1 / 2 italic_Ξ² where β𝛽\betaitalic_Ξ² is a positive odd integer dividing D𝐷Ditalic_D. This ends the proof of (ii), in light of (15).∎

Example 3.10.

Fix a negative integer d𝑑ditalic_d that is congruent to 1111 modulo 4444 (e.g., we may take d=βˆ’3𝑑3d=-3italic_d = - 3). If kπ‘˜kitalic_k and n𝑛nitalic_n are positive odd integers then k2⁒n2⁒dsuperscriptπ‘˜2superscript𝑛2𝑑k^{2}n^{2}ditalic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d is also a negative integer that iscongruent to 1111 modulo 4444. If we put

D=k2⁒n2⁒d,Ξ²=n2formulae-sequence𝐷superscriptπ‘˜2superscript𝑛2𝑑𝛽superscript𝑛2D=k^{2}n^{2}d,\quad\beta=n^{2}italic_D = italic_k start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d , italic_Ξ² = italic_n start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT

then β𝛽\betaitalic_Ξ² is a positive odd integer dividing D𝐷Ditalic_D. It followsthat if we put

τ⁒(n,k):=12+12⁒β⁒D=12+k⁒d2⁒nassignπœπ‘›π‘˜1212𝛽𝐷12π‘˜π‘‘2𝑛\tau(n,k):=\frac{1}{2}+\frac{1}{2\beta}\sqrt{D}=\frac{1}{2}+\frac{k\sqrt{d}}{2n}italic_Ο„ ( italic_n , italic_k ) := divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG square-root start_ARG italic_D end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_k square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 italic_n end_ARG(21)

then the elliptic curve ℰτ⁒(n,k)subscriptβ„°πœπ‘›π‘˜\mathcal{E}_{\tau(n,k)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_n , italic_k ) end_POSTSUBSCRIPT is odd.

Recall that n𝑛nitalic_n and kπ‘˜kitalic_k could be any odd positive integers. Notice also that all CM elliptic curves ℰτ⁒(n,k)subscriptβ„°πœπ‘›π‘˜\mathcal{E}_{\tau(n,k)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_n , italic_k ) end_POSTSUBSCRIPT are isogenous to each other, because the imaginary quadratic field

β„šβ’(τ⁒(n,k))=β„šβ’(d)β„šπœπ‘›π‘˜β„šπ‘‘{\mathbb{Q}}(\tau(n,k))={\mathbb{Q}}(\sqrt{d})blackboard_Q ( italic_Ο„ ( italic_n , italic_k ) ) = blackboard_Q ( square-root start_ARG italic_d end_ARG )

does not depend on n,kπ‘›π‘˜n,kitalic_n , italic_k.

Corollary 3.11.

Let d𝑑ditalic_d be a square-free negative integer such thatd≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 ).If n𝑛nitalic_n and mπ‘šmitalic_m are positive odd integers and

Ο„=12+nm⁒d𝜏12π‘›π‘šπ‘‘\tau=\frac{1}{2}+\frac{n}{m}\sqrt{d}italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_n end_ARG start_ARG italic_m end_ARG square-root start_ARG italic_d end_ARG

then β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is even.

Proof.

In light of Example 3.7 applied to y=2⁒|d|𝑦2𝑑y=2\sqrt{|d|}italic_y = 2 square-root start_ARG | italic_d | end_ARG, it suffices to check the case n=m=1π‘›π‘š1n=m=1italic_n = italic_m = 1, i.e., we may (and will) assume that

Ο„=1/2+d.𝜏12𝑑\tau=1/2+\sqrt{d}.italic_Ο„ = 1 / 2 + square-root start_ARG italic_d end_ARG .

Clearly,K:=β„šβ’(Ο„)=β„šβ’(d)assignπΎβ„šπœβ„šπ‘‘K:={\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{d})italic_K := blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_d end_ARG ). Suppose that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd, i.e., the order OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd.Let 𝔣𝔣\mathfrak{f}fraktur_f be the conductor of OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. By Lemma 1.1, 𝔣𝔣\mathfrak{f}fraktur_f is odd, hence,

1βˆ’π”£2βˆˆβ„€.1𝔣2β„€\frac{1-\mathfrak{f}}{2}\in{\mathbb{Z}}.divide start_ARG 1 - fraktur_f end_ARG start_ARG 2 end_ARG ∈ blackboard_Z .

It follows from [2, Ch. 2, Sect. 7, Th.1]that

OΟ„=β„€+𝔣⁒1+d2β’β„€βˆ‹1βˆ’π”£2+𝔣⁒1+d2=1+𝔣⁒d2.subscriptπ‘‚πœβ„€π”£1𝑑2β„€contains1𝔣2𝔣1𝑑21𝔣𝑑2O_{\tau}={\mathbb{Z}}+\mathfrak{f}\frac{1+\sqrt{d}}{2}{\mathbb{Z}}\ni\frac{1-%\mathfrak{f}}{2}+\mathfrak{f}\frac{1+\sqrt{d}}{2}=\frac{1+\mathfrak{f}\sqrt{d}%}{2}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z + fraktur_f divide start_ARG 1 + square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z βˆ‹ divide start_ARG 1 - fraktur_f end_ARG start_ARG 2 end_ARG + fraktur_f divide start_ARG 1 + square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG .

So,

1+𝔣⁒d2∈OΟ„.1𝔣𝑑2subscriptπ‘‚πœ\frac{1+\mathfrak{f}\sqrt{d}}{2}\in O_{\tau}.divide start_ARG 1 + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT .

Notice that

1+𝔣⁒d2=1+D21𝔣𝑑21𝐷2\frac{1+\mathfrak{f}\sqrt{d}}{2}=\frac{1+\sqrt{D}}{2}divide start_ARG 1 + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG

where D=𝔣2⁒d𝐷superscript𝔣2𝑑D=\mathfrak{f}^{2}ditalic_D = fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d is a negative integer that is also congruent to 1111 modulo 4444, because 𝔣𝔣\mathfrak{f}fraktur_f is odd.By Lemma 3.9, there is an odd positive integer β𝛽\betaitalic_Ξ² such that

Ο„=1/2+12⁒β⁒D=1/2+𝔣2⁒β⁒d.𝜏1212𝛽𝐷12𝔣2𝛽𝑑\tau=1/2+\frac{1}{2\beta}\sqrt{D}=1/2+\frac{\mathfrak{f}}{2\beta}\sqrt{d}.italic_Ο„ = 1 / 2 + divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG square-root start_ARG italic_D end_ARG = 1 / 2 + divide start_ARG fraktur_f end_ARG start_ARG 2 italic_Ξ² end_ARG square-root start_ARG italic_d end_ARG .

Since Ο„=1/2+d𝜏12𝑑\tau=1/2+\sqrt{d}italic_Ο„ = 1 / 2 + square-root start_ARG italic_d end_ARG, we get𝔣2⁒β=1𝔣2𝛽1\frac{\mathfrak{f}}{2\beta}=1divide start_ARG fraktur_f end_ARG start_ARG 2 italic_Ξ² end_ARG = 1, i.e., 𝔣=2⁒β𝔣2𝛽\mathfrak{f}=2\betafraktur_f = 2 italic_Ξ². Since 𝔣𝔣\mathfrak{f}fraktur_f is odd, we get the desired contradiction.∎

4. j𝑗jitalic_j-invariants: the real case

We will need the following results that either contained in [12, Ch. V, Sect. 2] (see also [7, Ch. 14, Sect. 4] and [6, Ch. 1, Sect. 4.3]) or follow readily from them.

  • β€’

    Let us consider the disjoint subsets 𝔗1subscript𝔗1\mathfrak{T}_{1}fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT of β„Œβ„Œ\mathfrak{H}fraktur_H defined as follows.

    𝔗1:={𝐒⁒t∣tβˆˆβ„,tβ‰₯1};𝔗2:={12+𝐒⁒t∣tβˆˆβ„,t>1/2}.formulae-sequenceassignsubscript𝔗1conditional-set𝐒𝑑formulae-sequence𝑑ℝ𝑑1assignsubscript𝔗2conditional-set12𝐒𝑑formulae-sequence𝑑ℝ𝑑12\mathfrak{T}_{1}:=\{\mathbf{i}t\mid t\in{\mathbb{R}},\ t\geq 1\};\quad%\mathfrak{T}_{2}:=\{\frac{1}{2}+\mathbf{i}t\mid t\in{\mathbb{R}},\ t>1/2\}.fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT := { bold_i italic_t ∣ italic_t ∈ blackboard_R , italic_t β‰₯ 1 } ; fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT := { divide start_ARG 1 end_ARG start_ARG 2 end_ARG + bold_i italic_t ∣ italic_t ∈ blackboard_R , italic_t > 1 / 2 } .

    Let us put

    𝔗:=𝔗1βˆͺ𝔗2βŠ‚β„Œ.assign𝔗subscript𝔗1subscript𝔗2β„Œ\mathfrak{T}:=\mathfrak{T}_{1}\cup\mathfrak{T}_{2}\subset\mathfrak{H}.fraktur_T := fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆͺ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ‚ fraktur_H .

    If s𝑠sitalic_s is a real number then there is precisely one Ο„βˆˆπ”—πœπ”—\tau\in\mathfrak{T}italic_Ο„ ∈ fraktur_T such that

    j⁒(β„°Ο„)=j⁒(Ο„)=s.𝑗subscriptβ„°πœπ‘—πœπ‘ j(\mathcal{E}_{\tau})=j(\tau)=s.italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) = italic_j ( italic_Ο„ ) = italic_s .

    In particular, the continuous function

    F:𝔗→ℝ,τ↦j⁒(Ο„)=j⁒(β„°Ο„):𝐹formulae-sequence→𝔗ℝmaps-toπœπ‘—πœπ‘—subscriptβ„°πœF:\mathfrak{T}\to{\mathbb{R}},\ \tau\mapsto j(\tau)=j(\mathcal{E}_{\tau})italic_F : fraktur_T β†’ blackboard_R , italic_Ο„ ↦ italic_j ( italic_Ο„ ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT )

    is a bijective map [12, Ch. V, Sect. 2, p. 417]

  • β€’

    The real-valued function

    f:[1/2,∞]β†’(βˆ’βˆž,∞),y↦τ=1/2+i⁒y↦j⁒(Ο„)=j⁒(β„°Ο„):𝑓formulae-sequenceβ†’12maps-toπ‘¦πœ12𝑖𝑦maps-toπ‘—πœπ‘—subscriptβ„°πœf:[1/2,\infty]\to(-\infty,\infty),\quad y\mapsto\tau=1/2+iy\mapsto j(\tau)=j(%\mathcal{E}_{\tau})italic_f : [ 1 / 2 , ∞ ] β†’ ( - ∞ , ∞ ) , italic_y ↦ italic_Ο„ = 1 / 2 + italic_i italic_y ↦ italic_j ( italic_Ο„ ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT )

    is continuous injective, and

    f⁒(1/2)=1728,f⁒(3/2)=0,limyβ†’βˆžf⁒(y)=βˆ’βˆžformulae-sequence𝑓121728formulae-sequence𝑓320subscript→𝑦𝑓𝑦f(1/2)=1728,\ f(\sqrt{3}/2)=0,\ \lim_{y\to\infty}f(y)=-\inftyitalic_f ( 1 / 2 ) = 1728 , italic_f ( square-root start_ARG 3 end_ARG / 2 ) = 0 , roman_lim start_POSTSUBSCRIPT italic_y β†’ ∞ end_POSTSUBSCRIPT italic_f ( italic_y ) = - ∞

    (see [12, Ch. V, Sect. 2, p. 414]).It follows that f𝑓fitalic_f is decreasing and the image of the map f𝑓fitalic_f lies in the closed semi-infinite interval (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ].So, one may view as a decreasing function the map

    f:[1/2,∞)β†’(βˆ’βˆž,1728],y↦τ=1/2+i⁒yβ†’j⁒(Ο„)=j⁒(β„°Ο„),:𝑓formulae-sequenceβ†’121728maps-toπ‘¦πœ12π‘–π‘¦β†’π‘—πœπ‘—subscriptβ„°πœf:[1/2,\infty)\to(-\infty,1728],\quad y\mapsto\tau=1/2+iy\to j(\tau)=j(%\mathcal{E}_{\tau}),italic_f : [ 1 / 2 , ∞ ) β†’ ( - ∞ , 1728 ] , italic_y ↦ italic_Ο„ = 1 / 2 + italic_i italic_y β†’ italic_j ( italic_Ο„ ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) ,

    which is obviously bijective. In addition, the image of the open semi-infinite interval(1/2,∞)12(1/2,\infty)( 1 / 2 , ∞ ) under f𝑓fitalic_f is the open semi-infinite interval (βˆ’βˆž,1728)1728(-\infty,1728)( - ∞ , 1728 ).

  • β€’

    The bijectiveness of the continuous mapF:𝔗→ℝ:𝐹→𝔗ℝF:\mathfrak{T}\to{\mathbb{R}}italic_F : fraktur_T β†’ blackboard_Rimplies that the set

    {j⁒(β„°Ο„)βˆ£Ο„βˆˆπ”—1}conditional-set𝑗subscriptβ„°πœπœsubscript𝔗1\{j(\mathcal{E}_{\tau})\mid\tau\in\mathfrak{T}_{1}\}{ italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) ∣ italic_Ο„ ∈ fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT }

    coincides with the closed semi-infinite interval [1728,∞)1728[1728,\infty)[ 1728 , ∞ ).

Proof of Theorem 2.4.

Withous loss of generality we may and will assume thatE=ℰτ𝐸subscriptβ„°πœE=\mathcal{E}_{\tau}italic_E = caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT with Ο„βˆˆπ”—πœπ”—\tau\in\mathfrak{T}italic_Ο„ ∈ fraktur_T.

Suppose that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd. In light of Lemma 3.9(i), Re⁒(Ο„)β‰ 0Re𝜏0\mathrm{Re}(\tau)\neq 0roman_Re ( italic_Ο„ ) β‰  0.Since Ο„βˆˆπ”—πœπ”—\tau\in\mathfrak{T}italic_Ο„ ∈ fraktur_T, we getRe⁒(Ο„)=1/2Re𝜏12\mathrm{Re}(\tau)=1/2roman_Re ( italic_Ο„ ) = 1 / 2, i.e., Ο„=1+𝐒⁒y2𝜏1𝐒𝑦2\tau=\frac{1+\mathbf{i}y}{2}italic_Ο„ = divide start_ARG 1 + bold_i italic_y end_ARG start_ARG 2 end_ARG for some real positive y𝑦yitalic_y. In other words,

Ο„βˆˆπ”—2.𝜏subscript𝔗2\tau\in\mathfrak{T}_{2}.italic_Ο„ ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

LetEβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT be any odd CM elliptic curve with real j⁒(Eβ€²)𝑗superscript𝐸′j(E^{\prime})italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) such that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT and Eβ€²superscript𝐸′E^{\prime}italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are isogenous over β„‚β„‚{\mathbb{C}}blackboard_C.Without loss of generality we may assume that

Eβ€²=β„°Ο„β€²,j⁒(Eβ€²)=j⁒(β„°Ο„β€²)=j⁒(Ο„β€²)formulae-sequencesuperscript𝐸′subscriptβ„°superscriptπœβ€²π‘—superscript𝐸′𝑗subscriptβ„°superscriptπœβ€²π‘—superscriptπœβ€²E^{\prime}=\mathcal{E}_{\tau^{\prime}},\ j(E^{\prime})=j(\mathcal{E}_{\tau^{%\prime}})=j(\tau^{\prime})italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , italic_j ( italic_E start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ) = italic_j ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT )

for a certain Ο„β€²βˆˆπ”—superscriptπœβ€²π”—\tau^{\prime}\in\mathfrak{T}italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_T. Applying Lemma 3.9(i) to β„°Ο„β€²subscriptβ„°superscriptπœβ€²\mathcal{E}_{\tau^{\prime}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT (instead of β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT),we conclude thatRe⁒(Ο„β€²)β‰ 0Resuperscriptπœβ€²0\mathrm{Re}(\tau^{\prime})\neq 0roman_Re ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) β‰  0 and therefore

Ο„β€²βˆˆπ”—2.superscriptπœβ€²subscript𝔗2\tau^{\prime}\in\mathfrak{T}_{2}.italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

It follows that π’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) lies in the open interval (βˆ’βˆž,1728)1728(-\infty,1728)( - ∞ , 1728 ) and thereforethe closure ofπ’₯⁒(ℝ,E)π’₯ℝ𝐸\mathcal{J}({\mathbb{R}},E)caligraphic_J ( blackboard_R , italic_E ) in ℝℝ{\mathbb{R}}blackboard_R lies in the closed interval (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ].

If n,mπ‘›π‘šn,mitalic_n , italic_m are any positive odd integers such that

mn⁒y>1π‘šπ‘›π‘¦1\frac{m}{n}y>1divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y > 1

then

mn⁒y/2>1/2,π‘šπ‘›π‘¦212\frac{m}{n}y/2>1/2,divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y / 2 > 1 / 2 ,

and the set of allsuch mn⁒y/2π‘šπ‘›π‘¦2\frac{m}{n}y/2divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y / 2 is dense in (1/2,∞)12(1/2,\infty)( 1 / 2 , ∞ ). If we put

Ο„m,n:=1+𝐒⁒mn⁒y2βˆˆπ”—assignsubscriptπœπ‘šπ‘›1π’π‘šπ‘›π‘¦2𝔗\tau_{m,n}:=\frac{1+\mathbf{i}\frac{m}{n}y}{2}\in\mathfrak{T}italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT := divide start_ARG 1 + bold_i divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y end_ARG start_ARG 2 end_ARG ∈ fraktur_T

then the set of all Ο„m,nsubscriptπœπ‘šπ‘›\tau_{m,n}italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT is a dense subset of 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.By Example 3.7,all CM elliptic curves β„°Ο„m,nsubscriptβ„°subscriptπœπ‘šπ‘›\mathcal{E}_{\tau_{m,n}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT are odd and isogenous to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. In addition,

f⁒(mn⁒y/2)=j⁒(β„°Ο„m,n)∈π’₯⁒(ℝ,β„°Ο„)βŠ‚(βˆ’βˆž,1728].π‘“π‘šπ‘›π‘¦2𝑗subscriptβ„°subscriptπœπ‘šπ‘›π’₯ℝsubscriptβ„°πœ1728f\left(\frac{m}{n}y/2\right)=j\left(\mathcal{E}_{\tau_{m,n}}\right)\in\mathcal%{J}({\mathbb{R}},\mathcal{E}_{\tau})\subset(-\infty,1728].italic_f ( divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG italic_y / 2 ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ∈ caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) βŠ‚ ( - ∞ , 1728 ] .

It follows from the continuity of f𝑓fitalic_f that the set of all j⁒(β„°Ο„m,n)𝑗subscriptβ„°subscriptπœπ‘šπ‘›j(\mathcal{E}_{\tau_{m,n}})italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_m , italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) is dense inf⁒((1/2,∞])=(βˆ’βˆž,1728)𝑓121728f((1/2,\infty])=(-\infty,1728)italic_f ( ( 1 / 2 , ∞ ] ) = ( - ∞ , 1728 ). This implies that the closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) coincides with (βˆ’βˆž,1728]1728(-\infty,1728]( - ∞ , 1728 ]when β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd.

Suppose that β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is even. Then β„šβ’(Ο„)=β„šβ’(d)β„šπœβ„šπ‘‘{\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{d})blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_d end_ARG ) where d𝑑ditalic_d is a square-free negative integer.If n,mπ‘›π‘šn,mitalic_n , italic_m are any positive integers such that

mn⁒|d|>1π‘šπ‘›π‘‘1\frac{m}{n}\sqrt{|d|}>1divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG | italic_d | end_ARG > 1

then the CM elliptic curves Emn⁒dsubscriptπΈπ‘šπ‘›π‘‘E_{\frac{m}{n}\sqrt{d}}italic_E start_POSTSUBSCRIPT divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_d end_ARG end_POSTSUBSCRIPT are isogenous to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT;in addition, they all are even, thanks to Lemma 3.9(i). On the other hand, obviously,the setof all such mn⁒dπ‘šπ‘›π‘‘\frac{m}{n}\sqrt{d}divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_d end_ARG lies in 𝔗1subscript𝔗1\mathfrak{T}_{1}fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT (in particular, all j⁒(Emn⁒d)βˆˆβ„π‘—subscriptπΈπ‘šπ‘›π‘‘β„j\left(E_{\frac{m}{n}\sqrt{d}}\right)\in{\mathbb{R}}italic_j ( italic_E start_POSTSUBSCRIPT divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_d end_ARG end_POSTSUBSCRIPT ) ∈ blackboard_R) and dense there. This implies thatthe closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) contains F⁒(𝔗1)=[1728,∞)𝐹subscript𝔗11728F(\mathfrak{T}_{1})=[1728,\infty)italic_F ( fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = [ 1728 , ∞ ).

Suppose that dβ‰’1(mod4)not-equivalent-to𝑑annotated1moduloabsent4d\not\equiv 1(\bmod 4)italic_d β‰’ 1 ( roman_mod 4 ). Then the quadratic fieldβ„šβ’(d)β„šπ‘‘{\mathbb{Q}}(\sqrt{d})blackboard_Q ( square-root start_ARG italic_d end_ARG )has discriminant 4⁒d4𝑑4d4 italic_d, which is even. It follows from Lemma 1.2that every elliptic curveβ„°Ο„β€²subscriptβ„°superscriptπœβ€²\mathcal{E}_{\tau^{\prime}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT with

β„šβ’(Ο„β€²)=β„šβ’(d)=β„šβ’(Ο„)β„šsuperscriptπœβ€²β„šπ‘‘β„šπœ{\mathbb{Q}}(\tau^{\prime})={\mathbb{Q}}(\sqrt{d})={\mathbb{Q}}(\tau)blackboard_Q ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = blackboard_Q ( square-root start_ARG italic_d end_ARG ) = blackboard_Q ( italic_Ο„ )

is even and isogenous to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT.In particular, if m,nπ‘šπ‘›m,nitalic_m , italic_n are any positive integers such thatmn⁒|d|>1π‘šπ‘›π‘‘1\frac{m}{n}\sqrt{|d|}>1divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG | italic_d | end_ARG > 1 then

τ⁒(m,n):=1/2+mn⁒dβˆˆπ”—2,β„šβ’(τ⁒(m,n))=β„šβ’(d),formulae-sequenceassignπœπ‘šπ‘›12π‘šπ‘›π‘‘subscript𝔗2β„šπœπ‘šπ‘›β„šπ‘‘\tau(m,n):=1/2+\frac{m}{n}\sqrt{d}\in\mathfrak{T}_{2},\quad{\mathbb{Q}}(\tau(m%,n))={\mathbb{Q}}(\sqrt{d}),italic_Ο„ ( italic_m , italic_n ) := 1 / 2 + divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_d end_ARG ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , blackboard_Q ( italic_Ο„ ( italic_m , italic_n ) ) = blackboard_Q ( square-root start_ARG italic_d end_ARG ) ,

which implies that the elliptic curveℰτ⁒(m,n)subscriptβ„°πœπ‘šπ‘›\mathcal{E}_{\tau(m,n)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT is isogenous to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT and even. Sinceτ⁒(m,n)βˆˆπ”—2πœπ‘šπ‘›subscript𝔗2\tau(m,n)\in\mathfrak{T}_{2}italic_Ο„ ( italic_m , italic_n ) ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we get

j⁒(ℰτ⁒(m,n))βˆˆβ„β’and therefore⁒j⁒(ℰτ⁒(m,n))∈π’₯⁒(ℝ,β„°Ο„).𝑗subscriptβ„°πœπ‘šπ‘›β„and therefore𝑗subscriptβ„°πœπ‘šπ‘›π’₯ℝsubscriptβ„°πœj\left(\mathcal{E}_{\tau(m,n)}\right)\in{\mathbb{R}}\ \text{ and therefore}\ j%\left(\mathcal{E}_{\tau(m,n)}\right)\in\mathcal{J}({\mathbb{R}},\mathcal{E}_{%\tau}).italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT ) ∈ blackboard_R and therefore italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT ) ∈ caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) .

On the other hand, the set of all such τ⁒(m,n)πœπ‘šπ‘›\tau(m,n)italic_Ο„ ( italic_m , italic_n ) is obviously dense in 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. It followsthat the closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) contains f⁒(𝔗1)=(βˆ’βˆž,1728)𝑓subscript𝔗11728f\left(\mathfrak{T}_{1}\right)=(-\infty,1728)italic_f ( fraktur_T start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = ( - ∞ , 1728 ).Recall that we have already checked that this closure contains [1728,∞)1728[1728,\infty)[ 1728 , ∞ ). It follows thatthe closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) coincides with the whole ℝℝ{\mathbb{R}}blackboard_R if dβ‰’1(mod4)not-equivalent-to𝑑annotated1moduloabsent4d\not\equiv 1(\bmod 4)italic_d β‰’ 1 ( roman_mod 4 ).

Now suppose that d≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 ). If m,nπ‘šπ‘›m,nitalic_m , italic_n are any positive odd integers such thatmn⁒|d|>1/2π‘šπ‘›π‘‘12\frac{m}{n}\sqrt{|d|}>1/2divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG | italic_d | end_ARG > 1 / 2 then

τ⁒(m,n):=12+mn⁒dβˆˆπ”—2,j⁒(ℰτ⁒(m,n))βˆˆβ„,formulae-sequenceassignπœπ‘šπ‘›12π‘šπ‘›π‘‘subscript𝔗2𝑗subscriptβ„°πœπ‘šπ‘›β„\tau(m,n):=\frac{1}{2}+\frac{m}{n}\sqrt{d}\in\mathfrak{T}_{2},\quad j\left(%\mathcal{E}_{\tau(m,n)}\right)\in{\mathbb{R}},italic_Ο„ ( italic_m , italic_n ) := divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_m end_ARG start_ARG italic_n end_ARG square-root start_ARG italic_d end_ARG ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT ) ∈ blackboard_R ,

and the elliptic curveℰτ⁒(m,n)subscriptβ„°πœπ‘šπ‘›\mathcal{E}_{\tau(m,n)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT is isogenous to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT.By Corollary 3.11, ℰτ⁒(m,n)subscriptβ„°πœπ‘šπ‘›\mathcal{E}_{\tau(m,n)}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT is evenand therefore j⁒(ℰτ⁒(m,n))∈π’₯⁒(ℝ,β„°Ο„)𝑗subscriptβ„°πœπ‘šπ‘›π’₯ℝsubscriptβ„°πœj\left(\mathcal{E}_{\tau(m,n)}\right)\in\mathcal{J}({\mathbb{R}},\mathcal{E}_{%\tau})italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ ( italic_m , italic_n ) end_POSTSUBSCRIPT ) ∈ caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ).Clearly, the set of all such τ⁒(m,n)πœπ‘šπ‘›\tau(m,n)italic_Ο„ ( italic_m , italic_n ) is dense in 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. It follows thatthe closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) contains F⁒(𝔗2)=(βˆ’βˆž,1728)𝐹subscript𝔗21728F(\mathfrak{T}_{2})=(-\infty,1728)italic_F ( fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = ( - ∞ , 1728 ).Recall that we have already checked that this closure contains [1728,∞)1728[1728,\infty)[ 1728 , ∞ ). It follows thatthe closure of π’₯⁒(ℝ,β„°Ο„)π’₯ℝsubscriptβ„°πœ\mathcal{J}({\mathbb{R}},\mathcal{E}_{\tau})caligraphic_J ( blackboard_R , caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) coincides with the whole ℝℝ{\mathbb{R}}blackboard_R if d≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 ).This ends the proof of Theorem 2.4.∎

Remark 4.1.

Let Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT be an elliptic curve over ℝℝ{\mathbb{R}}blackboard_R and let E=Eℝ×ℝℂ𝐸subscriptℝsubscript𝐸ℝℂE=E_{{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}italic_E = italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C be its complexification.Then there is Ο„βˆˆβ„Œπœβ„Œ\tau\in\mathfrak{H}italic_Ο„ ∈ fraktur_H that enjoys the following properties (see [12, Ch. V, Sect. 5.2, Th. 2.3 and its proof]).

  • (i)

    Re⁒(Ο„)=0Re𝜏0\mathrm{Re}(\tau)=0roman_Re ( italic_Ο„ ) = 0 or 1/2121/21 / 2.

  • (ii)

    E𝐸Eitalic_E is isomorphic to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT. In particular,

    j⁒(Eℝ)=j⁒(E)=j⁒(Ο„)βˆˆβ„.𝑗subscriptπΈβ„π‘—πΈπ‘—πœβ„j(E_{{\mathbb{R}}})=j(E)=j(\tau)\in{\mathbb{R}}.italic_j ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) = italic_j ( italic_E ) = italic_j ( italic_Ο„ ) ∈ blackboard_R .
  • (iii)

    q:=exp⁑(2⁒π⁒𝐒⁒τ)assignπ‘ž2πœ‹π’πœq:=\exp(2\pi\mathbf{i}\tau)italic_q := roman_exp ( 2 italic_Ο€ bold_i italic_Ο„ ) is a nonzero real number such that |q|<1π‘ž1|q|<1| italic_q | < 1 and the real Lie groupEℝ⁒(ℝ)subscript𝐸ℝℝE_{{\mathbb{R}}}({\mathbb{R}})italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( blackboard_R ) of ℝℝ{\mathbb{R}}blackboard_R-points on E𝐸Eitalic_E is isomorphic to the quotient β„βˆ—/qβ„€superscriptℝsuperscriptπ‘žβ„€{\mathbb{R}}^{*}/q^{{\mathbb{Z}}}blackboard_R start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT / italic_q start_POSTSUPERSCRIPT blackboard_Z end_POSTSUPERSCRIPT.(Here qβ„€superscriptπ‘žβ„€q^{{\mathbb{Z}}}italic_q start_POSTSUPERSCRIPT blackboard_Z end_POSTSUPERSCRIPT is the cyclic multiplicative subgroup of β„βˆ—superscriptℝ{\mathbb{R}}^{*}blackboard_R start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT generated by qπ‘žqitalic_q.)In particular, Eℝ⁒(ℝ)subscript𝐸ℝℝE_{{\mathbb{R}}}({\mathbb{R}})italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( blackboard_R ) is connected if and only if q<0π‘ž0q<0italic_q < 0, i.e., Re⁒(Ο„)=1/2Re𝜏12\mathrm{Re}(\tau)=1/2roman_Re ( italic_Ο„ ) = 1 / 2.

  • (iv)

    Suppose that E𝐸Eitalic_E is an odd elliptic curve with CM. It follows from Lemma 3.9(i) thatRe⁒(Ο„)=1/2Re𝜏12\mathrm{Re}(\tau)=1/2roman_Re ( italic_Ο„ ) = 1 / 2. In light of (iii),Eℝ⁒(ℝ)subscript𝐸ℝℝE_{{\mathbb{R}}}({\mathbb{R}})italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( blackboard_R ) is connected.

5. Odd and even orders

Let O𝑂Oitalic_O be an order in a quadratic field K𝐾Kitalic_K with conductor 𝔣𝔣\mathfrak{f}fraktur_f.Lemmas 1.1 and 1.2 follow from the next two assertions.

Lemma 5.1.

The following conditions are equivalent.

  • (i)

    tr⁒(O)=β„€tr𝑂℀\mathrm{tr}(O)={\mathbb{Z}}roman_tr ( italic_O ) = blackboard_Z.

  • (ii)

    tr⁒(O⁒[1/n])tr𝑂delimited-[]1𝑛\mathrm{tr}(O[1/n])roman_tr ( italic_O [ 1 / italic_n ] ) contains 1111 for all odd positive integers n𝑛nitalic_n.

  • (iii)

    discr⁒(O)discr𝑂\mathrm{discr}(O)roman_discr ( italic_O ) is an odd integer.

  • (iv)

    Both discr⁒(K)discr𝐾\mathrm{discr}(K)roman_discr ( italic_K ) and the conductor 𝔣Osubscript𝔣𝑂\mathfrak{f}_{O}fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT are odd integers.

  • (v)

    There exists w∈O𝑀𝑂w\in Oitalic_w ∈ italic_O such that tr⁒(w)tr𝑀\mathrm{tr}(w)roman_tr ( italic_w ) is an odd integer.

  • (vi)

    There exists an integer D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) that is not a square such that

    1+D2∈O.1𝐷2𝑂\frac{1+\sqrt{D}}{2}\in O.divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O .
  • (vii)

    There exists an integer D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1(\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) that is not a square such that

    O=β„€+℀⁒1+D2=℀⁒[1+D2].𝑂℀℀1𝐷2β„€delimited-[]1𝐷2O={\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D}}{2}={\mathbb{Z}}\left[\frac{1+%\sqrt{D}}{2}\right].italic_O = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = blackboard_Z [ divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ] .
Lemma 5.2.

The following conditions are equivalent.

  • (i)

    tr⁒(O)=2⁒℀tr𝑂2β„€\mathrm{tr}(O)=2{\mathbb{Z}}roman_tr ( italic_O ) = 2 blackboard_Z.

  • (ii)

    tr⁒(O⁒[1/n])tr𝑂delimited-[]1𝑛\mathrm{tr}(O[1/n])roman_tr ( italic_O [ 1 / italic_n ] ) does not contain 1111 for all odd positive integers n𝑛nitalic_n.

  • (iii)

    discr⁒(O)discr𝑂\mathrm{discr}(O)roman_discr ( italic_O ) is an even integer.

  • (iv)

    Either discr⁒(K)discr𝐾\mathrm{discr}(K)roman_discr ( italic_K ) or the conductor 𝔣Osubscript𝔣𝑂\mathfrak{f}_{O}fraktur_f start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT is an even integer.

  • (v)

    There exists an integer D𝐷Ditalic_D that is not a square and such thatO=β„€+℀⁒D𝑂℀℀𝐷O={\mathbb{Z}}+{\mathbb{Z}}\ \sqrt{D}italic_O = blackboard_Z + blackboard_Z square-root start_ARG italic_D end_ARG.

Proof of Lemmas 5.1 and 5.2.

Recall ((1) and (2)) that

tr⁒(O)=℀⁒or⁒2⁒℀,discr⁒(O)=discr⁒(K)⋅𝔣2.formulae-sequencetr𝑂℀or2β„€discr𝑂⋅discr𝐾superscript𝔣2\mathrm{tr}(O)={\mathbb{Z}}\ \text{ or }2{\mathbb{Z}},\quad\mathrm{discr}(O)=%\mathrm{discr}(K)\cdot\mathfrak{f}^{2}.roman_tr ( italic_O ) = blackboard_Z or 2 blackboard_Z , roman_discr ( italic_O ) = roman_discr ( italic_K ) β‹… fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .(22)

Step 1 Let n𝑛nitalic_n be an odd positive integer. Then

tr⁒(O⁒[1/n])=℀⁒[1/n]β‹…tr⁒(O)βŠ‚β„š.tr𝑂delimited-[]1𝑛⋅℀delimited-[]1𝑛trπ‘‚β„š\mathrm{tr}(O[1/n])={\mathbb{Z}}[1/n]\cdot\mathrm{tr}(O)\subset{\mathbb{Q}}.roman_tr ( italic_O [ 1 / italic_n ] ) = blackboard_Z [ 1 / italic_n ] β‹… roman_tr ( italic_O ) βŠ‚ blackboard_Q .

It follows that

tr⁒(O⁒[1/n])=℀⁒[1/n]βˆ‹1⁒if⁒tr⁒(O)=β„€;tr𝑂delimited-[]1𝑛℀delimited-[]1𝑛contains1iftr𝑂℀\mathrm{tr}(O[1/n])={\mathbb{Z}}[1/n]\ni 1\ \text{ if }\mathrm{tr}(O)={\mathbb%{Z}};roman_tr ( italic_O [ 1 / italic_n ] ) = blackboard_Z [ 1 / italic_n ] βˆ‹ 1 if roman_tr ( italic_O ) = blackboard_Z ;
tr⁒(O⁒[1/n])=2⋅℀⁒[1/n]βˆ‹ΜΈ1⁒if⁒tr⁒(O)=2⁒℀.tr𝑂delimited-[]1𝑛⋅2β„€delimited-[]1𝑛not-contains1iftr𝑂2β„€\mathrm{tr}(O[1/n])=2\cdot{\mathbb{Z}}[1/n]\not\ni 1\ \text{ if }\mathrm{tr}(O%)=2{\mathbb{Z}}.roman_tr ( italic_O [ 1 / italic_n ] ) = 2 β‹… blackboard_Z [ 1 / italic_n ] βˆ‹ΜΈ 1 if roman_tr ( italic_O ) = 2 blackboard_Z .

Now the equivalence of (i) and (ii) follows from first equality of (22) (for both Lemmas).The equivalence of (iii) and (iv) follows from second equality of (22) (for both Lemmas).

Step 2 Let us concentrate for a while on the proof of Lemma5.1. The equivalence of (i) and (v) follows from first equality of (22). In addition,(vii) obviously implies (vi) while (vi) implies (v), because if we put w=1+D2𝑀1𝐷2w=\frac{1+\sqrt{D}}{2}italic_w = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG then

tr⁒(w)=tr⁒(1+D2)=1+D2+1βˆ’D2=1tr𝑀tr1𝐷21𝐷21𝐷21\mathrm{tr}(w)=\mathrm{tr}\left(\frac{1+\sqrt{D}}{2}\right)=\frac{1+\sqrt{D}}{%2}+\frac{1-\sqrt{D}}{2}=1roman_tr ( italic_w ) = roman_tr ( divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ) = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + divide start_ARG 1 - square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = 1

is an odd integer. On the other hand, (vii) implies that disc⁒(O)=Ddisc𝑂𝐷\mathrm{disc}(O)=Droman_disc ( italic_O ) = italic_D, which is odd. It follows that(vii) implies (iii). So, in order to finish the proof of Lemma 5.1, it suffices to check that

  • (1o)

    (i) implies (vii);

  • (2o)

    (iii) implies (i).

Now let us switch to Lemma 5.2.Clearly, (v) implies both(i). On the other hand, (v) implies that disc⁒(O)=4⁒Ddisc𝑂4𝐷\mathrm{disc}(O)=4Droman_disc ( italic_O ) = 4 italic_D, which is odd. It follows that (v) implies (iii).So, in order to finish the proof of Lemma 5.2, it suffices to check that

  • (1e)

    (i) implies (v);

  • (2e)

    (iii) implies (i).

Step 3 We have K=β„šβ’(d)πΎβ„šπ‘‘K={\mathbb{Q}}(\sqrt{d})italic_K = blackboard_Q ( square-root start_ARG italic_d end_ARG ) where dβ‰ 1𝑑1d\neq 1italic_d β‰  1 is a square-free integer. Clearly,

tr⁒(d)=0.tr𝑑0\mathrm{tr}(\sqrt{d})=0.roman_tr ( square-root start_ARG italic_d end_ARG ) = 0 .(23)

Suppose that dβ‰’1(mod4)not-equivalent-to𝑑annotated1moduloabsent4d\not\equiv 1(\bmod 4)italic_d β‰’ 1 ( roman_mod 4 ).It is known [2, Ch. 2, Sect. 7, Th.1] that

disc⁒(K)=4⁒d,O=β„€+𝔣⁒d⁒℀=β„€+𝔣2⁒d⁒℀,disc⁒(O)=disc⁒(K)⁒𝔣2=4⁒d⁒𝔣2.formulae-sequenceformulae-sequencedisc𝐾4𝑑𝑂℀𝔣𝑑℀℀superscript𝔣2𝑑℀disc𝑂disc𝐾superscript𝔣24𝑑superscript𝔣2\mathrm{disc}(K)=4d,\ \ O={\mathbb{Z}}+\mathfrak{f}\sqrt{d}\ {\mathbb{Z}}={%\mathbb{Z}}+\sqrt{\mathfrak{f}^{2}d}\ {\mathbb{Z}},\quad\mathrm{disc}(O)=%\mathrm{disc}(K)\mathfrak{f}^{2}=4d\mathfrak{f}^{2}.roman_disc ( italic_K ) = 4 italic_d , italic_O = blackboard_Z + fraktur_f square-root start_ARG italic_d end_ARG blackboard_Z = blackboard_Z + square-root start_ARG fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d end_ARG blackboard_Z , roman_disc ( italic_O ) = roman_disc ( italic_K ) fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 4 italic_d fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

In particular, disc⁒(O)disc𝑂\mathrm{disc}(O)roman_disc ( italic_O ) is even. On the other hand, if we put D:=𝔣2⁒dassign𝐷superscript𝔣2𝑑D:=\mathfrak{f}^{2}ditalic_D := fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d then D𝐷Ditalic_D is not a square (because d𝑑ditalic_d is square-free) and

K=β„šβ’(d)=β„šβ’(D),O=β„€+D⁒℀,discr⁒(O)=4⁒d⁒𝔣2=4⁒D.formulae-sequenceπΎβ„šπ‘‘β„šπ·formulae-sequence𝑂℀𝐷℀discr𝑂4𝑑superscript𝔣24𝐷K={\mathbb{Q}}(\sqrt{d})={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+\sqrt{D}%\ {\mathbb{Z}},\quad\mathrm{discr}(O)=4d\mathfrak{f}^{2}=4D.italic_K = blackboard_Q ( square-root start_ARG italic_d end_ARG ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + square-root start_ARG italic_D end_ARG blackboard_Z , roman_discr ( italic_O ) = 4 italic_d fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = 4 italic_D .

It follows from (23) thattr⁒(O)=2⁒℀tr𝑂2β„€\mathrm{tr}(O)=2{\mathbb{Z}}roman_tr ( italic_O ) = 2 blackboard_Z. This implies that O𝑂Oitalic_O enjoys properties (i), (iii), (v) of Lemma 5.2.On the other hand, O𝑂Oitalic_O does not enjoy any of properties (i) and (iii) of Lemma 5.1. In light of Step 2, this proves both Lemmas in the (last remaining) case when dβ‰’1(mod4)not-equivalent-to𝑑annotated1moduloabsent4d\not\equiv 1(\bmod 4)italic_d β‰’ 1 ( roman_mod 4 ).

Suppose that d≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 ).It is known [2, Ch. 2, Sect. 7, Th.1] that

disc⁒(K)=d,O=β„€+𝔣⁒1+d2⁒℀,disc⁒(O)=disc⁒(K)⁒𝔣2=d⁒𝔣2.formulae-sequencedisc𝐾𝑑formulae-sequence𝑂℀𝔣1𝑑2β„€disc𝑂disc𝐾superscript𝔣2𝑑superscript𝔣2\mathrm{disc}(K)=d,\quad O={\mathbb{Z}}+\mathfrak{f}\frac{1+\sqrt{d}}{2}{%\mathbb{Z}},\ \mathrm{disc}(O)=\mathrm{disc}(K)\mathfrak{f}^{2}=d\mathfrak{f}^%{2}.roman_disc ( italic_K ) = italic_d , italic_O = blackboard_Z + fraktur_f divide start_ARG 1 + square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z , roman_disc ( italic_O ) = roman_disc ( italic_K ) fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_d fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT .

It follows from (23) that

tr⁒(O)=℀⁒if⁒𝔣⁒is odd;tr⁒(O)=2⁒℀⁒if⁒𝔣⁒is even.formulae-sequencetr𝑂℀if𝔣is oddtr𝑂2β„€if𝔣is even\mathrm{tr}(O)={\mathbb{Z}}\ \text{ if }\mathfrak{f}\ \text{ is odd};\quad%\mathrm{tr}(O)=2{\mathbb{Z}}\ \text{ if }\mathfrak{f}\ \text{ is even}.roman_tr ( italic_O ) = blackboard_Z if fraktur_f is odd ; roman_tr ( italic_O ) = 2 blackboard_Z if fraktur_f is even .(24)

If 𝔣𝔣\mathfrak{f}fraktur_f is even then tr⁒(O)=2⁒℀tr𝑂2β„€\mathrm{tr}(O)=2{\mathbb{Z}}roman_tr ( italic_O ) = 2 blackboard_Z, disc⁒(O)disc𝑂\mathrm{disc}(O)roman_disc ( italic_O ) is even, m=𝔣/2π‘šπ”£2m=\mathfrak{f}/2italic_m = fraktur_f / 2 is a positive integer, and

O=β„€+𝔣⁒1+d2⁒℀=β„€+m⁒(1+d)⁒℀=β„€+m⁒d⁒℀=𝑂℀𝔣1𝑑2β„€β„€π‘š1π‘‘β„€β„€π‘šπ‘‘β„€absentO={\mathbb{Z}}+\mathfrak{f}\frac{1+\sqrt{d}}{2}{\mathbb{Z}}={\mathbb{Z}}+m%\left(1+\sqrt{d}\right){\mathbb{Z}}={\mathbb{Z}}+m\sqrt{d}\ {\mathbb{Z}}=italic_O = blackboard_Z + fraktur_f divide start_ARG 1 + square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z = blackboard_Z + italic_m ( 1 + square-root start_ARG italic_d end_ARG ) blackboard_Z = blackboard_Z + italic_m square-root start_ARG italic_d end_ARG blackboard_Z =
β„€+m2⁒d⁒℀=β„€+D⁒℀℀superscriptπ‘š2𝑑℀℀𝐷℀{\mathbb{Z}}+\sqrt{m^{2}d}\ {\mathbb{Z}}={\mathbb{Z}}+\sqrt{D}\ {\mathbb{Z}}blackboard_Z + square-root start_ARG italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d end_ARG blackboard_Z = blackboard_Z + square-root start_ARG italic_D end_ARG blackboard_Z

where D:=m2⁒dassign𝐷superscriptπ‘š2𝑑D:=m^{2}ditalic_D := italic_m start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d, which is not a square, because d𝑑ditalic_d is square-free. We get

K=β„šβ’(d)=β„šβ’(D),O=β„€+D⁒℀,discr⁒(O)=𝔣2⁒d=(2⁒m)2⁒d=4⁒D.formulae-sequenceπΎβ„šπ‘‘β„šπ·formulae-sequence𝑂℀𝐷℀discr𝑂superscript𝔣2𝑑superscript2π‘š2𝑑4𝐷K={\mathbb{Q}}(\sqrt{d})={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+\sqrt{D}%\ {\mathbb{Z}},\quad\mathrm{discr}(O)=\mathfrak{f}^{2}d=(2m)^{2}d=4D.italic_K = blackboard_Q ( square-root start_ARG italic_d end_ARG ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + square-root start_ARG italic_D end_ARG blackboard_Z , roman_discr ( italic_O ) = fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d = ( 2 italic_m ) start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d = 4 italic_D .

This implies that O𝑂Oitalic_O enjoys all the properties (i), (iii), (v) of Lemma 5.2.On the other hand, O𝑂Oitalic_O does not enjoy any of properties (i) and (iii) of Lemma 5.1.In light of Step 2, this proves both Lemmas in the case when dβ‰’1(mod4)not-equivalent-to𝑑annotated1moduloabsent4d\not\equiv 1(\bmod 4)italic_d β‰’ 1 ( roman_mod 4 )and 𝔣𝔣\mathfrak{f}fraktur_f is even.

Now suppose that 𝔣𝔣\mathfrak{f}fraktur_f is odd. It follows from (24) that tr⁒(O)=β„€tr𝑂℀\mathrm{tr}(O)={\mathbb{Z}}roman_tr ( italic_O ) = blackboard_Z and discr⁒(O)discr𝑂\mathrm{discr}(O)roman_discr ( italic_O ) is odd. In addition, if we put m:=(π”£βˆ’1)/2βˆˆβ„€assignπ‘šπ”£12β„€m:=(\mathfrak{f}-1)/2\in{\mathbb{Z}}italic_m := ( fraktur_f - 1 ) / 2 ∈ blackboard_Z then𝔣=2⁒m+1𝔣2π‘š1\mathfrak{f}=2m+1fraktur_f = 2 italic_m + 1 and

O=β„€+𝔣⁒1+d2⁒℀=β„€+𝔣+𝔣⁒d2⁒℀=β„€+(m+1+𝔣⁒d2)⁒℀=𝑂℀𝔣1𝑑2℀℀𝔣𝔣𝑑2β„€β„€π‘š1𝔣𝑑2β„€absentO={\mathbb{Z}}+\mathfrak{f}\frac{1+\sqrt{d}}{2}{\mathbb{Z}}={\mathbb{Z}}+\frac%{\mathfrak{f}+\mathfrak{f}\sqrt{d}}{2}\ {\mathbb{Z}}={\mathbb{Z}}+\left(m+%\frac{1+\mathfrak{f}\sqrt{d}}{2}\right)\ {\mathbb{Z}}=italic_O = blackboard_Z + fraktur_f divide start_ARG 1 + square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z = blackboard_Z + divide start_ARG fraktur_f + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z = blackboard_Z + ( italic_m + divide start_ARG 1 + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG ) blackboard_Z =
β„€+1+𝔣⁒d2⁒℀=β„€+1+𝔣2⁒d2⁒℀=β„€+1+D2⁒℀℀1𝔣𝑑2β„€β„€1superscript𝔣2𝑑2β„€β„€1𝐷2β„€{\mathbb{Z}}+\frac{1+\mathfrak{f}\sqrt{d}}{2}{\mathbb{Z}}={\mathbb{Z}}+\frac{1%+\sqrt{\mathfrak{f}^{2}d}}{2}\ {\mathbb{Z}}={\mathbb{Z}}+\frac{1+\sqrt{D}}{2}{%\mathbb{Z}}blackboard_Z + divide start_ARG 1 + fraktur_f square-root start_ARG italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z = blackboard_Z + divide start_ARG 1 + square-root start_ARG fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z = blackboard_Z + divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z

where D:=𝔣2⁒dassign𝐷superscript𝔣2𝑑D:=\mathfrak{f}^{2}ditalic_D := fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d is not a square, because d𝑑ditalic_d is square-free. Since 𝔣𝔣\mathfrak{f}fraktur_f is odd, 𝔣2≑1(mod4)superscript𝔣2annotated1moduloabsent4\mathfrak{f}^{2}\equiv 1(\bmod 4)fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ 1 ( roman_mod 4 ).Since d≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 ), the product D:=𝔣2⁒dassign𝐷superscript𝔣2𝑑D:=\mathfrak{f}^{2}ditalic_D := fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d is also congruent to 1111 modulo 4444. We get

K=β„šβ’(d)=β„šβ’(D),O=β„€+1+D2⁒℀,discr⁒(O)=𝔣2⁒d=D.formulae-sequenceπΎβ„šπ‘‘β„šπ·formulae-sequence𝑂℀1𝐷2β„€discr𝑂superscript𝔣2𝑑𝐷K={\mathbb{Q}}(\sqrt{d})={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+\frac{1+%\sqrt{D}}{2}\ {\mathbb{Z}},\quad\mathrm{discr}(O)=\mathfrak{f}^{2}d=D.italic_K = blackboard_Q ( square-root start_ARG italic_d end_ARG ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z , roman_discr ( italic_O ) = fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_d = italic_D .

This implies that O𝑂Oitalic_O enjoys properties (i), (iii), (vii) of Lemma 5.1.On the other hand, O𝑂Oitalic_O does not enjoy any of properties (i) and (iii) of Lemma 5.2. In light of Step 2, this proves both Lemmas in the case when d≑1(mod4)𝑑annotated1moduloabsent4d\equiv 1(\bmod 4)italic_d ≑ 1 ( roman_mod 4 )and 𝔣𝔣\mathfrak{f}fraktur_f is odd. This ends the proof of both Lemmas.∎

Remark 5.3.

Let n𝑛nitalic_n be a positive odd integer, Ο•:K1β†’K2:italic-Ο•β†’subscript𝐾1subscript𝐾2\phi:K_{1}\to K_{2}italic_Ο• : italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT an isomorphism of quadratic fields,and O1subscript𝑂1O_{1}italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and O2subscript𝑂2O_{2}italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are orders in K1subscript𝐾1K_{1}italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and K2subscript𝐾2K_{2}italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT respectively.Suppose that

ϕ⁒(O1⁒[1/n])=O2⁒[1/n].italic-Ο•subscript𝑂1delimited-[]1𝑛subscript𝑂2delimited-[]1𝑛\phi(O_{1}[1/n])=O_{2}[1/n].italic_Ο• ( italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ 1 / italic_n ] ) = italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ 1 / italic_n ] .

Then

trK1/β„šβ’(O1⁒[1/n])=trK2/β„šβ’(O2⁒[1/n]).subscripttrsubscript𝐾1β„šsubscript𝑂1delimited-[]1𝑛subscripttrsubscript𝐾2β„šsubscript𝑂2delimited-[]1𝑛\mathrm{tr}_{K_{1}/{\mathbb{Q}}}(O_{1}[1/n])=\mathrm{tr}_{K_{2}/{\mathbb{Q}}}(%O_{2}[1/n]).roman_tr start_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / blackboard_Q end_POSTSUBSCRIPT ( italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT [ 1 / italic_n ] ) = roman_tr start_POSTSUBSCRIPT italic_K start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / blackboard_Q end_POSTSUBSCRIPT ( italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [ 1 / italic_n ] ) .

It follows from Lemmas 5.1(ii) and 5.2(ii) that O1subscript𝑂1O_{1}italic_O start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and O2subscript𝑂2O_{2}italic_O start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT have the same parity,i.e., either they both are odd or both even.

Remark 5.4.

Recall that if 𝔣𝔣\mathfrak{f}fraktur_f is an odd integer then 𝔣2≑1(mod4)superscript𝔣2annotated1moduloabsent4\mathfrak{f}^{2}\equiv 1\ (\bmod 4)fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ 1 ( roman_mod 4 ).On the other hand, if 𝔣𝔣\mathfrak{f}fraktur_f is an even integer then 𝔣2≑0(mod4).superscript𝔣2annotated0moduloabsent4\mathfrak{f}^{2}\equiv 0\ (\bmod 4).fraktur_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ 0 ( roman_mod 4 ) .

Let O𝑂Oitalic_O be an order in a quadratic field K𝐾Kitalic_K. Now the explicit formulas for its discriminant (see Step 3 above) imply the following.

  • (e)

    O𝑂Oitalic_O is even if and only if disc⁒(O)≑0(mod4)disc𝑂annotated0moduloabsent4\mathrm{disc}(O)\equiv 0\ (\bmod 4)roman_disc ( italic_O ) ≑ 0 ( roman_mod 4 ). If this is the case then there is an integer D𝐷Ditalic_D that is not a square and such that

    K=β„šβ’(D),O=β„€+℀⁒D,discr⁒(O)=4⁒D.formulae-sequenceπΎβ„šπ·formulae-sequence𝑂℀℀𝐷discr𝑂4𝐷K={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+{\mathbb{Z}}\ \sqrt{D},\quad%\mathrm{discr}(O)=4D.italic_K = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + blackboard_Z square-root start_ARG italic_D end_ARG , roman_discr ( italic_O ) = 4 italic_D .
  • (o)

    O𝑂Oitalic_O is odd if and only if disc⁒(O)≑1(mod4)disc𝑂annotated1moduloabsent4\mathrm{disc}(O)\equiv 1\ (\bmod 4)roman_disc ( italic_O ) ≑ 1 ( roman_mod 4 ). If this is the case then there is an integer D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1\ (\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) that is not a square and such that

    K=β„šβ’(D),O=β„€+℀⁒1+D2,discr⁒(O)=D.formulae-sequenceπΎβ„šπ·formulae-sequence𝑂℀℀1𝐷2discr𝑂𝐷K={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D}}{%2},\quad\mathrm{discr}(O)=D.italic_K = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , roman_discr ( italic_O ) = italic_D .

6. Isogenies of Elliptic Curves

Proof of Proposition 1.4.

There is a (dual) isogeny ψ:E2β†’E1:πœ“β†’subscript𝐸2subscript𝐸1\psi:E_{2}\to E_{1}italic_ψ : italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such that Οˆβˆ˜Ο•:E1β†’E1:πœ“italic-Ο•β†’subscript𝐸1subscript𝐸1\psi\circ\phi:E_{1}\to E_{1}italic_ψ ∘ italic_Ο• : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is multiplication by n𝑛nitalic_n in E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPTand Ο•βˆ˜Οˆ:E2β†’E2:italic-Ο•πœ“β†’subscript𝐸2subscript𝐸2\phi\circ\psi:E_{2}\to E_{2}italic_Ο• ∘ italic_ψ : italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is multiplication by n𝑛nitalic_n in E2subscript𝐸2E_{2}italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT [6, p. 7]. Then we get an isomorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-algebras

Ξ¦:End0(E1)=End(E1)βŠ—β„šβ†’End(E2)βŠ—β„š=End0(E2),u1↦1nΟ•u1ψ,\Phi:\mathrm{End}^{0}(E_{1})=\mathrm{End}(E_{1})\otimes{\mathbb{Q}}\to\mathrm{%End}(E_{2})\otimes{\mathbb{Q}}=\mathrm{End}^{0}(E_{2}),\ u_{1}\mapsto\frac{1}{%n}\phi u_{1}\psi,roman_Ξ¦ : roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) βŠ— blackboard_Q β†’ roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βŠ— blackboard_Q = roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ↦ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ ,

whose inverse is an isomorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-algebras

Ξ¨:End0(E2)=End(E2)βŠ—β„šβ†’End(E1)βŠ—β„š=End0(E1),u2↦1nψu2Ο•.\Psi:\mathrm{End}^{0}(E_{2})=\mathrm{End}(E_{2})\otimes{\mathbb{Q}}\to\mathrm{%End}(E_{1})\otimes{\mathbb{Q}}=\mathrm{End}^{0}(E_{1}),\ u_{2}\mapsto\frac{1}{%n}\psi u_{2}\phi.roman_Ξ¨ : roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βŠ— blackboard_Q β†’ roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) βŠ— blackboard_Q = roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ↦ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_ψ italic_u start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_Ο• .

Clearly, both ΦΦ\Phiroman_Ξ¦ and ΨΨ\Psiroman_Ξ¨ sends 1111 to 1111, sums to sums and therefore are hom*omorphisms of β„šβ„š{\mathbb{Q}}blackboard_Q-vector spaces. On the other handif u1∈End0⁒(E1)subscript𝑒1superscriptEnd0subscript𝐸1u_{1}\in\mathrm{End}^{0}(E_{1})italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) then

Ψ⁒(Φ⁒(u1))=1n⁒ψ⁒Φ⁒(u1)⁒ϕ=1n⁒ψ⁒(1n⁒ϕ⁒u1⁒ψ)⁒ϕ=1n⁒(1nβ’Οˆβ’Ο•)⁒u1⁒(1nβ’Οˆβ’Ο•)=u1.ΨΦsubscript𝑒11π‘›πœ“Ξ¦subscript𝑒1italic-Ο•1π‘›πœ“1𝑛italic-Ο•subscript𝑒1πœ“italic-Ο•1𝑛1π‘›πœ“italic-Ο•subscript𝑒11π‘›πœ“italic-Ο•subscript𝑒1\Psi(\Phi(u_{1}))=\frac{1}{n}\psi\Phi(u_{1})\phi=\frac{1}{n}\psi\left(\frac{1}%{n}\phi u_{1}\psi\right)\phi=\frac{1}{n}\left(\frac{1}{n}\psi\phi\right)u_{1}%\left(\frac{1}{n}\psi\phi\right)=u_{1}.roman_Ξ¨ ( roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_ψ roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_Ο• = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_ψ ( divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ ) italic_Ο• = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ( divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_ψ italic_Ο• ) italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_ψ italic_Ο• ) = italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT .

Since both End0⁒(E1)superscriptEnd0subscript𝐸1\mathrm{End}^{0}(E_{1})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and End0⁒(E2)superscriptEnd0subscript𝐸2\mathrm{End}^{0}(E_{2})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) are β„šβ„š{\mathbb{Q}}blackboard_Q-vector spaces of the same dimension 2, ΦΦ\Phiroman_Ξ¦ is an isomorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-vector spaces and ΨΨ\Psiroman_Ξ¨ is itsinverse, hence, also an isomorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-vector spaces.The only thing that remains to check is that both ΦΦ\Phiroman_Ξ¦ and ΨΨ\Psiroman_Ξ¨ are compatible with multiplication. Let us check it.If u1,v1∈End0⁒(E1)subscript𝑒1subscript𝑣1superscriptEnd0subscript𝐸1u_{1},v_{1}\in\mathrm{End}^{0}(E_{1})italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∈ roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) then

Φ⁒(u1)⁒Φ⁒(v2)=1n⁒ϕ⁒u1⁒ψ⁒1n⁒ϕ⁒v1⁒ψ=1n⁒ϕ⁒u1⁒1n⁒(Οˆβ’Ο•)⁒v1⁒ψ=1n⁒ϕ⁒u1⁒v1⁒ψ=Φ⁒(u1⁒v1).Ξ¦subscript𝑒1Ξ¦subscript𝑣21𝑛italic-Ο•subscript𝑒1πœ“1𝑛italic-Ο•subscript𝑣1πœ“1𝑛italic-Ο•subscript𝑒11π‘›πœ“italic-Ο•subscript𝑣1πœ“1𝑛italic-Ο•subscript𝑒1subscript𝑣1πœ“Ξ¦subscript𝑒1subscript𝑣1\Phi(u_{1})\Phi(v_{2})=\frac{1}{n}\phi u_{1}\psi\frac{1}{n}\phi v_{1}\psi=%\frac{1}{n}\phi u_{1}\frac{1}{n}(\psi\phi)v_{1}\psi=\frac{1}{n}\phi u_{1}v_{1}%\psi=\Phi(u_{1}v_{1}).roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) roman_Ξ¦ ( italic_v start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT divide start_ARG 1 end_ARG start_ARG italic_n end_ARG ( italic_ψ italic_Ο• ) italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ = divide start_ARG 1 end_ARG start_ARG italic_n end_ARG italic_Ο• italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ψ = roman_Ξ¦ ( italic_u start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_v start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

This proves that ΦΦ\Phiroman_Ξ¦ is a hom*omorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-algebras and therefore is an isomorphism of quadratic fields End0⁒(E1)superscriptEnd0subscript𝐸1\mathrm{End}^{0}(E_{1})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and End0⁒(E2)superscriptEnd0subscript𝐸2\mathrm{End}^{0}(E_{2})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).Hence, its inverse ΨΨ\Psiroman_Ξ¨ is also a field isomorphism.

Now I claim that

Φ⁒(End⁒(E1)⁒[1/n])=End⁒(E2)⁒[1/n],Ψ⁒(End⁒(E2)⁒[1/n])=End⁒(E1)⁒[1/n].formulae-sequenceΞ¦Endsubscript𝐸1delimited-[]1𝑛Endsubscript𝐸2delimited-[]1𝑛ΨEndsubscript𝐸2delimited-[]1𝑛Endsubscript𝐸1delimited-[]1𝑛\Phi(\mathrm{End}(E_{1})[1/n])=\mathrm{End}(E_{2})[1/n],\quad\Psi(\mathrm{End}%(E_{2})[1/n])=\mathrm{End}(E_{1})[1/n].roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) = roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] , roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) = roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] .(25)

Indeed, it follows from the definition of ΦΦ\Phiroman_Φ and ΨΨ\Psiroman_Ψ that

Φ⁒(End⁒(E1))βŠ‚1n⁒End⁒(E2)βŠ‚End⁒(E2)⁒[1/n],Ξ¦Endsubscript𝐸11𝑛Endsubscript𝐸2Endsubscript𝐸2delimited-[]1𝑛\Phi(\mathrm{End}(E_{1}))\subset\frac{1}{n}\mathrm{End}(E_{2})\subset\mathrm{%End}(E_{2})[1/n],roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ) βŠ‚ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ,
Ψ⁒(End⁒(E2))βŠ‚1n⁒End⁒(E1)βŠ‚End⁒(E1)⁒[1/n].Ξ¨Endsubscript𝐸21𝑛Endsubscript𝐸1Endsubscript𝐸1delimited-[]1𝑛\Psi(\mathrm{End}(E_{2}))\subset\frac{1}{n}\mathrm{End}(E_{1})\subset\mathrm{%End}(E_{1})[1/n].roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ) βŠ‚ divide start_ARG 1 end_ARG start_ARG italic_n end_ARG roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] .

It follows that

Φ⁒(End⁒(E1)⁒[1/n])βŠ‚End⁒(E2)⁒[1/n],Ψ⁒(End⁒(E2)⁒[1/n])βŠ‚End⁒(E1)⁒[1/n]formulae-sequenceΞ¦Endsubscript𝐸1delimited-[]1𝑛Endsubscript𝐸2delimited-[]1𝑛ΨEndsubscript𝐸2delimited-[]1𝑛Endsubscript𝐸1delimited-[]1𝑛\Phi(\mathrm{End}(E_{1})[1/n])\subset\mathrm{End}(E_{2})[1/n],\quad\Psi(%\mathrm{End}(E_{2})[1/n])\subset\mathrm{End}(E_{1})[1/n]roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] , roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ]

and therefore

End(E1)[1/n])=Ξ¨(Ξ¦(End(E1)[1/n]))βŠ‚Ξ¨(End(E2)[1/n]),\mathrm{End}(E_{1})[1/n])=\Psi(\Phi(\mathrm{End}(E_{1})[1/n]))\subset\Psi(%\mathrm{End}(E_{2})[1/n]),roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) = roman_Ξ¨ ( roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) ) βŠ‚ roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) ,
End(E2)[1/n]=Ξ¦(Ξ¨(End(E2)[1/n]βŠ‚Ξ¦(End(E1)[1/n]).\mathrm{End}(E_{2})[1/n]=\Phi(\Psi(\mathrm{End}(E_{2})[1/n]\subset\Phi(\mathrm%{End}(E_{1})[1/n]).roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] = roman_Ξ¦ ( roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] βŠ‚ roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) .

We get

End(E1)[1/n])βŠ‚Ξ¨(End(E2)[1/n])]βŠ‚End(E1)[1/n],\mathrm{End}(E_{1})[1/n])\subset\Psi(\mathrm{End}(E_{2})[1/n])]\subset\mathrm{%End}(E_{1})[1/n],roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) βŠ‚ roman_Ξ¨ ( roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) ] βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ,
End⁒(E2)⁒[1/n]βŠ‚Ξ¦β’(End⁒(E1)⁒[1/n])βŠ‚End⁒(E2)⁒[1/n],Endsubscript𝐸2delimited-[]1𝑛ΦEndsubscript𝐸1delimited-[]1𝑛Endsubscript𝐸2delimited-[]1𝑛\mathrm{End}(E_{2})[1/n]\subset\Phi(\mathrm{End}(E_{1})[1/n])\subset\mathrm{%End}(E_{2})[1/n],roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] βŠ‚ roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) βŠ‚ roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ,

which proves (25).

So, ΦΦ\Phiroman_Φ is an isomorphism of quadratic fields End0⁒(E1)superscriptEnd0subscript𝐸1\mathrm{End}^{0}(E_{1})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) and End0⁒(E2)superscriptEnd0subscript𝐸2\mathrm{End}^{0}(E_{2})roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that

Φ⁒(End⁒(E1)⁒[1/n])=End⁒(E2)⁒[1/n].Ξ¦Endsubscript𝐸1delimited-[]1𝑛Endsubscript𝐸2delimited-[]1𝑛\Phi(\mathrm{End}(E_{1})[1/n])=\mathrm{End}(E_{2})[1/n].roman_Ξ¦ ( roman_End ( italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) [ 1 / italic_n ] ) = roman_End ( italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) [ 1 / italic_n ] .

Now the desired result follows from Remark 5.3.∎

Proof of Proposition 1.5.

We may assume that

E1=E1,ℝ×ℝℂ,E2=E2,ℝ×ℝℂ.formulae-sequencesubscript𝐸1subscriptℝsubscript𝐸1ℝℂsubscript𝐸2subscriptℝsubscript𝐸2ℝℂE_{1}=E_{1,{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}},\quad E_{2}=E_{2,{%\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}.italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C , italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C .

Let Ο•:E1β†’E2:italic-Ο•β†’subscript𝐸1subscript𝐸2\phi:E_{1}\to E_{2}italic_Ο• : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be an isogeny and ϕ¯:E1β†’E2:Β―italic-Ο•β†’subscript𝐸1subscript𝐸2\bar{\phi}:E_{1}\to E_{2}overΒ― start_ARG italic_Ο• end_ARG : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT its β€œcomplex-conjugate”.If ϕ¯=ϕ¯italic-Ο•italic-Ο•\bar{\phi}=\phioverΒ― start_ARG italic_Ο• end_ARG = italic_Ο• then Ο•italic-Ο•\phiitalic_Ο• could be descended to an isogeny E1,ℝ→E2,ℝ→subscript𝐸1ℝsubscript𝐸2ℝE_{1,{\mathbb{R}}}\to E_{2,{\mathbb{R}}}italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT over ℝℝ{\mathbb{R}}blackboard_R.

Suppose that ϕ¯≠ϕ¯italic-Ο•italic-Ο•\bar{\phi}\neq\phioverΒ― start_ARG italic_Ο• end_ARG β‰  italic_Ο•. Then its differenceψ:=Ο•Β―βˆ’Ο•:E1β†’E2:assignπœ“Β―italic-Ο•italic-Ο•β†’subscript𝐸1subscript𝐸2\psi:=\bar{\phi}-\phi:E_{1}\to E_{2}italic_ψ := overΒ― start_ARG italic_Ο• end_ARG - italic_Ο• : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is a nonzero hom*omorphism of elliptic curves and therefore is an isogeny.Its complex-conjugateψ¯=Ο•Β―βˆ’Ο•Β―Β―πœ“Β―Β―italic-Ο•italic-Ο•\bar{\psi}=\overline{\bar{\phi}-\phi}overΒ― start_ARG italic_ψ end_ARG = overΒ― start_ARG overΒ― start_ARG italic_Ο• end_ARG - italic_Ο• end_ARG coincides with Ο•βˆ’Ο•Β―=βˆ’Οˆitalic-ϕ¯italic-Ο•πœ“\phi-\bar{\phi}=-\psiitalic_Ο• - overΒ― start_ARG italic_Ο• end_ARG = - italic_ψ. On the other hand, it is well known that not all endomorphismsof the CM elliptic curve E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT are defined over ℝℝ{\mathbb{R}}blackboard_R, i.e., there is an endomorphism α𝛼\alphaitalic_Ξ± of E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT such that its complex-conjugateα¯¯𝛼\bar{\alpha}overΒ― start_ARG italic_Ξ± end_ARG does not coincide with α𝛼\alphaitalic_Ξ± (see Lemma 6.1 below).This means that Ξ²=Ξ±Β―βˆ’Ξ±:E1β†’E1:𝛽¯𝛼𝛼→subscript𝐸1subscript𝐸1\beta=\bar{\alpha}-\alpha:E_{1}\to E_{1}italic_Ξ² = overΒ― start_ARG italic_Ξ± end_ARG - italic_Ξ± : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT is a nonzero endomorphism of E1subscript𝐸1E_{1}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT,i.e., is an isogeny. Clearly, the complex conjugate β¯¯𝛽\bar{\beta}overΒ― start_ARG italic_Ξ² end_ARG of β𝛽\betaitalic_Ξ² coincides with

Ξ±Β―βˆ’Ξ±Β―=Ξ±βˆ’Ξ±Β―=βˆ’Ξ².¯¯𝛼𝛼𝛼¯𝛼𝛽\overline{\bar{\alpha}-\alpha}=\alpha-\bar{\alpha}=-\beta.overΒ― start_ARG overΒ― start_ARG italic_Ξ± end_ARG - italic_Ξ± end_ARG = italic_Ξ± - overΒ― start_ARG italic_Ξ± end_ARG = - italic_Ξ² .

So,

ψ¯=βˆ’Οˆ,Ξ²Β―=βˆ’Ξ².formulae-sequenceΒ―πœ“πœ“Β―π›½π›½\bar{\psi}=-\psi,\quad\bar{\beta}=-\beta.overΒ― start_ARG italic_ψ end_ARG = - italic_ψ , overΒ― start_ARG italic_Ξ² end_ARG = - italic_Ξ² .

This implies that the composition Ξ»:=ψ∘β:E1β†’E2:assignπœ†πœ“π›½β†’subscript𝐸1subscript𝐸2\lambda:=\psi\circ\beta:E_{1}\to E_{2}italic_Ξ» := italic_ψ ∘ italic_Ξ² : italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is an isogeny, whose complex conjugate λ¯=Οˆβˆ˜Ξ²Β―Β―πœ†Β―πœ“π›½\bar{\lambda}=\overline{\psi\circ\beta}overΒ― start_ARG italic_Ξ» end_ARG = overΒ― start_ARG italic_ψ ∘ italic_Ξ² end_ARG equals

ψ¯∘β¯=(βˆ’Οˆ)∘(βˆ’Ξ²)=ψ∘β=Ξ».Β―πœ“Β―π›½πœ“π›½πœ“π›½πœ†\bar{\psi}\circ\bar{\beta}=(-\psi)\circ(-\beta)=\psi\circ\beta=\lambda.overΒ― start_ARG italic_ψ end_ARG ∘ overΒ― start_ARG italic_Ξ² end_ARG = ( - italic_ψ ) ∘ ( - italic_Ξ² ) = italic_ψ ∘ italic_Ξ² = italic_Ξ» .

So, the nonzero hom*omorphism Ξ»πœ†\lambdaitalic_Ξ» coincides with its β€œcomplex-conjugate”,i.e., is defined over ℝℝ{\mathbb{R}}blackboard_R. This means thatthere is a ℝℝ{\mathbb{R}}blackboard_R-hom*omorphism λℝ:E1,ℝ→E2,ℝ:subscriptπœ†β„β†’subscript𝐸1ℝsubscript𝐸2ℝ\lambda_{{\mathbb{R}}}:E_{1,{\mathbb{R}}}\to E_{2,{\mathbb{R}}}italic_Ξ» start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT : italic_E start_POSTSUBSCRIPT 1 , blackboard_R end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 , blackboard_R end_POSTSUBSCRIPT of elliptic curves, whose β€œcomlexification” E1β†’E2β†’subscript𝐸1subscript𝐸2E_{1}\to E_{2}italic_E start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β†’ italic_E start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT coincides withΞ»πœ†\lambdaitalic_Ξ». Since Ξ»β‰ 0πœ†0\lambda\neq 0italic_Ξ» β‰  0, we obtain that λℝ≠0subscriptπœ†β„0\lambda_{{\mathbb{R}}}\neq 0italic_Ξ» start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT β‰  0 and therefore is an isogeny.∎

The following assertion (and its proof that I am going to reproduce) is pretty well known but I was unable to find a reference.

Lemma 6.1.

Let Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT be an elliptic curve over ℝℝ{\mathbb{R}}blackboard_R. Then the ring Endℝ⁒(Eℝ)subscriptEndℝsubscript𝐸ℝ\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) of ℝℝ{\mathbb{R}}blackboard_R-endomorphisms of Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT is β„€β„€{\mathbb{Z}}blackboard_Zand the corresponding endomorphism algebra

Endℝ0⁒(Eℝ):=Endℝ⁒(Eℝ)βŠ—β„šassignsuperscriptsubscriptEndℝ0subscript𝐸ℝtensor-productsubscriptEndℝsubscriptπΈβ„β„š\mathrm{End}_{{\mathbb{R}}}^{0}(E_{{\mathbb{R}}}):=\mathrm{End}_{{\mathbb{R}}}%(E_{{\mathbb{R}}})\otimes{\mathbb{Q}}roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) := roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) βŠ— blackboard_Q

is β„šβ„š{\mathbb{Q}}blackboard_Q.

Proof.

Let us consider the complexification E=Eℝ×ℝℂ𝐸subscriptℝsubscript𝐸ℝℂE=E_{{\mathbb{R}}}\times_{{\mathbb{R}}}{\mathbb{C}}italic_E = italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT Γ— start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT blackboard_C of Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT. We have

β„€βŠ‚Endℝ⁒(Eℝ)βŠ‚End⁒(E),β„šβŠ‚Endℝ0⁒(Eℝ)βŠ‚End0⁒(E).formulae-sequenceβ„€subscriptEndℝsubscript𝐸ℝEndπΈβ„šsuperscriptsubscriptEndℝ0subscript𝐸ℝsuperscriptEnd0𝐸{\mathbb{Z}}\subset\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})\subset\mathrm%{End}(E),\quad{\mathbb{Q}}\subset\mathrm{End}_{{\mathbb{R}}}^{0}(E_{{\mathbb{R%}}})\subset\mathrm{End}^{0}(E).blackboard_Z βŠ‚ roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) βŠ‚ roman_End ( italic_E ) , blackboard_Q βŠ‚ roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) βŠ‚ roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ) .

If Endℝ⁒(Eℝ)β‰ β„€subscriptEndℝsubscript𝐸ℝ℀\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})\neq{\mathbb{Z}}roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) β‰  blackboard_Z then

End⁒(E)β‰ β„€,End0⁒(E)β‰ β„š,formulae-sequenceEnd𝐸℀superscriptEnd0πΈβ„š\mathrm{End}(E)\neq{\mathbb{Z}},\quad\mathrm{End}^{0}(E)\neq{\mathbb{Q}},roman_End ( italic_E ) β‰  blackboard_Z , roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ) β‰  blackboard_Q ,

i.e., E𝐸Eitalic_E is an elliptic curve with CMand K:=End0⁒(E)assign𝐾superscriptEnd0𝐸K:=\mathrm{End}^{0}(E)italic_K := roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ) is an imaginary quadratic field. This implies that

K=End0⁒(E)=Endℝ0⁒(Eℝ)𝐾superscriptEnd0𝐸superscriptsubscriptEndℝ0subscript𝐸ℝK=\mathrm{End}^{0}(E)=\mathrm{End}_{{\mathbb{R}}}^{0}(E_{{\mathbb{R}}})italic_K = roman_End start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E ) = roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT )

and Endℝ⁒(Eℝ)subscriptEndℝsubscript𝐸ℝ\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) is an order in the quadratic field K𝐾Kitalic_K. Let Ωℝ1⁒(Eℝ)subscriptsuperscriptΞ©1ℝsubscript𝐸ℝ\Omega^{1}_{{\mathbb{R}}}(E_{{\mathbb{R}}})roman_Ξ© start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) be the space of differentials of the first kind on Eℝsubscript𝐸ℝE_{{\mathbb{R}}}italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT,which is a ℝℝ{\mathbb{R}}blackboard_R-vector space of dimension 1111. By functoriality, Endℝ⁒(Eℝ)subscriptEndℝsubscript𝐸ℝ\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) acts on Ωℝ1⁒(Eℝ)subscriptsuperscriptΞ©1ℝsubscript𝐸ℝ\Omega^{1}_{{\mathbb{R}}}(E_{{\mathbb{R}}})roman_Ξ© start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ),which gives us the injective ring hom*omorphism

Ξ΄:Endℝ⁒(Eℝ)β†ͺEndℝ⁒(Ωℝ1⁒(Eℝ))=ℝ:𝛿β†ͺsubscriptEndℝsubscript𝐸ℝsubscriptEndℝsubscriptsuperscriptΞ©1ℝsubscript𝐸ℝℝ\delta:\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})\hookrightarrow\mathrm{End%}_{{\mathbb{R}}}(\Omega^{1}_{{\mathbb{R}}}(E_{{\mathbb{R}}}))={\mathbb{R}}italic_Ξ΄ : roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) β†ͺ roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( roman_Ξ© start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) ) = blackboard_R

[10, Ch. I, Sect. 2.8]. By β„šβ„š{\mathbb{Q}}blackboard_Q-linearity, δ𝛿\deltaitalic_Ξ΄ extends to the hom*omorphism of β„šβ„š{\mathbb{Q}}blackboard_Q-algebras

Ξ΄β„š:K=Endℝ0⁒(Eℝ)=Endℝ⁒(Eℝ)βŠ—β„šβ†’Endℝ⁒(Ωℝ1⁒(Eℝ))=ℝ,:subscriptπ›Ώβ„šπΎsuperscriptsubscriptEndℝ0subscript𝐸ℝtensor-productsubscriptEndℝsubscriptπΈβ„β„šβ†’subscriptEndℝsubscriptsuperscriptΞ©1ℝsubscript𝐸ℝℝ\delta_{{\mathbb{Q}}}:K=\mathrm{End}_{{\mathbb{R}}}^{0}(E_{{\mathbb{R}}})=%\mathrm{End}_{{\mathbb{R}}}(E_{{\mathbb{R}}})\otimes{\mathbb{Q}}\to\mathrm{End%}_{{\mathbb{R}}}(\Omega^{1}_{{\mathbb{R}}}(E_{{\mathbb{R}}}))={\mathbb{R}},italic_Ξ΄ start_POSTSUBSCRIPT blackboard_Q end_POSTSUBSCRIPT : italic_K = roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) = roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) βŠ— blackboard_Q β†’ roman_End start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( roman_Ξ© start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ( italic_E start_POSTSUBSCRIPT blackboard_R end_POSTSUBSCRIPT ) ) = blackboard_R ,

which is also injective (since K𝐾Kitalic_K is a field). So, Ξ΄β„š:K→ℝ:subscriptπ›Ώβ„šβ†’πΎβ„\delta_{{\mathbb{Q}}}:K\to{\mathbb{R}}italic_Ξ΄ start_POSTSUBSCRIPT blackboard_Q end_POSTSUBSCRIPT : italic_K β†’ blackboard_R is a field embedding. But such an embedding does not exist,since K𝐾Kitalic_K is an imaginary quadratic field. The obtained contradiction proves the desired result.∎

7. Quadratic Exercises

In light of Theorem 7.4(ii) (see below), it is natural to β€œclassify” (count the number of) divisors β𝛽\betaitalic_Ξ² of the discriminant D𝐷Ditalic_Dthat are relatively prime to D/β𝐷𝛽D/\betaitalic_D / italic_Ξ². Let us start with the following definition (notation).

Definition 7.1 (Definition-Notation).

Let n𝑛nitalic_n be a nonzero integer. We write Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT for the (finite) set of prime divisors of n𝑛nitalic_n. By Main Theorem of Arithmetic,

n=±∏p∈Pnpen,p𝑛plus-or-minussubscriptproduct𝑝subscript𝑃𝑛superscript𝑝subscript𝑒𝑛𝑝n=\pm\prod_{p\in P_{n}}p^{e_{n,p}}italic_n = Β± ∏ start_POSTSUBSCRIPT italic_p ∈ italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT

where en,psubscript𝑒𝑛𝑝e_{n,p}italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT are certain positive integers uniquely determined by n𝑛nitalic_n.

Let us call a divisor rπ‘Ÿritalic_r of n𝑛nitalic_n a saturated divisor if the integers rπ‘Ÿritalic_r and n/rπ‘›π‘Ÿn/ritalic_n / italic_r are relatively prime.

Clearly, rπ‘Ÿritalic_r is a saturated divisor of n𝑛nitalic_n if and only if |n|/rπ‘›π‘Ÿ|n|/r| italic_n | / italic_r is one. It is also clear that rπ‘Ÿritalic_r is a saturated divisor of n𝑛nitalic_nif and only if βˆ’rπ‘Ÿ-r- italic_r is also one.

The following assertion is an easy exercise in elementary number theory.

Proposition 7.2.
  • (i)

    Let S𝑆Sitalic_S be a subset of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT. Then both integers

    𝐫n,S=∏p∈Spen,psubscript𝐫𝑛𝑆subscriptproduct𝑝𝑆superscript𝑝subscript𝑒𝑛𝑝\mathbf{r}_{n,S}=\prod_{p\in S}p^{e_{n,p}}bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_p ∈ italic_S end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT

    and βˆ’π«n,Ssubscript𝐫𝑛𝑆-\mathbf{r}_{n,S}- bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPTare saturated divisors of n𝑛nitalic_n.(As usual, if S𝑆Sitalic_S is the empty set then rn,βˆ…=1subscriptπ‘Ÿπ‘›1r_{n,\emptyset}=1italic_r start_POSTSUBSCRIPT italic_n , βˆ… end_POSTSUBSCRIPT = 1.)Conversely, if c𝑐citalic_c is a saturated divisor of n𝑛nitalic_n then βˆ’c𝑐-c- italic_c is also a saturated divisor of n𝑛nitalic_n and

    c=±∏p∈Pcpen,p=±𝐫n,Pc.𝑐plus-or-minussubscriptproduct𝑝subscript𝑃𝑐superscript𝑝subscript𝑒𝑛𝑝plus-or-minussubscript𝐫𝑛subscript𝑃𝑐c=\pm\prod_{p\in P_{c}}p^{e_{n,p}}=\pm\mathbf{r}_{n,P_{c}}.italic_c = Β± ∏ start_POSTSUBSCRIPT italic_p ∈ italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT = Β± bold_r start_POSTSUBSCRIPT italic_n , italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT .
  • (ii)

    The number of positive saturated divisors of n𝑛nitalic_n is the number of subsets of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, i.e., 2#⁒(Pn)superscript2#subscript𝑃𝑛2^{\#(P_{n})}2 start_POSTSUPERSCRIPT # ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPTwhere #⁒(Pn)#subscript𝑃𝑛\#(P_{n})# ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) is the cardinality of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, i.e., the number of prime divisors of n𝑛nitalic_n.

  • (iii)

    Let c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be positive saturated divisors of n𝑛nitalic_n. Then their greatest common divisor c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and least common multiple c12subscript𝑐12c_{12}italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPTare also saturated divisors of n𝑛nitalic_n. In addition, the integers c10=c1/c0subscript𝑐10subscript𝑐1subscript𝑐0c_{10}=c_{1}/c_{0}italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and c20=c2/c0subscript𝑐20subscript𝑐2subscript𝑐0c_{20}=c_{2}/c_{0}italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT / italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT are also positive saturated divisors of n𝑛nitalic_n.We also have

    c0=𝐫n,S0,c12=𝐫n,S12,c10=𝐫n,S10,c20=𝐫n,S10,c1⁒c2c02=𝐫n,S1⁒Δ⁒S2formulae-sequencesubscript𝑐0subscript𝐫𝑛subscript𝑆0formulae-sequencesubscript𝑐12subscript𝐫𝑛subscript𝑆12formulae-sequencesubscript𝑐10subscript𝐫𝑛subscript𝑆10formulae-sequencesubscript𝑐20subscript𝐫𝑛subscript𝑆10subscript𝑐1subscript𝑐2superscriptsubscript𝑐02subscript𝐫𝑛subscript𝑆1Ξ”subscript𝑆2c_{0}=\mathbf{r}_{n,S_{0}},\ c_{12}=\mathbf{r}_{n,S_{12}},\ c_{10}=\mathbf{r}_%{n,S_{10}},\ c_{20}=\mathbf{r}_{n,S_{10}},\ \frac{c_{1}c_{2}}{c_{0}^{2}}=%\mathbf{r}_{n,S_{1}\Delta S_{2}}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , divide start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT

    where

    S1=Pc1,S2=Pc2,S0=S1∩S2,S12=S1βˆͺS2,S10=S1βˆ–S0,S20=S2βˆ–S0formulae-sequencesubscript𝑆1subscript𝑃subscript𝑐1formulae-sequencesubscript𝑆2subscript𝑃subscript𝑐2formulae-sequencesubscript𝑆0subscript𝑆1subscript𝑆2formulae-sequencesubscript𝑆12subscript𝑆1subscript𝑆2formulae-sequencesubscript𝑆10subscript𝑆1subscript𝑆0subscript𝑆20subscript𝑆2subscript𝑆0S_{1}=P_{c_{1}},\ S_{2}=P_{c_{2}},\ S_{0}=S_{1}\cap S_{2},\ S_{12}=S_{1}\cup S%_{2},\ S_{10}=S_{1}\setminus S_{0},\ S_{20}=S_{2}\setminus S_{0}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆͺ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT

    and

    S1⁒Δ⁒S2=(S1βˆ–S2)βˆͺ(S2βˆ–S1)subscript𝑆1Ξ”subscript𝑆2subscript𝑆1subscript𝑆2subscript𝑆2subscript𝑆1S_{1}\Delta S_{2}=(S_{1}\setminus S_{2})\cup(S_{2}\setminus S_{1})italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = ( italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βˆͺ ( italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT )

    is the symmetric difference of S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT.

  • (iv)

    If S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are disjoint subsets of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT then 𝐫n,S1subscript𝐫𝑛subscript𝑆1\mathbf{r}_{n,S_{1}}bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝐫n,S2subscript𝐫𝑛subscript𝑆2\mathbf{r}_{n,S_{2}}bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are relatively prime and

    𝐫n,S1βˆͺS2=𝐫n,S1⁒𝐫n,S2.subscript𝐫𝑛subscript𝑆1subscript𝑆2subscript𝐫𝑛subscript𝑆1subscript𝐫𝑛subscript𝑆2\mathbf{r}_{n,S_{1}\cup S_{2}}=\mathbf{r}_{n,S_{1}}\mathbf{r}_{n,S_{2}}.bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆͺ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .
  • (v)

    Suppose that n𝑛nitalic_n is a negative integer that is congruent to 1111 modulo 4444. Then the numberof positive saturated divisors rπ‘Ÿritalic_r of n𝑛nitalic_n with r<|n|π‘Ÿπ‘›r<\sqrt{|n|}italic_r < square-root start_ARG | italic_n | end_ARG equals 2#⁒(Pn)βˆ’1superscript2#subscript𝑃𝑛12^{\#(P_{n})-1}2 start_POSTSUPERSCRIPT # ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) - 1 end_POSTSUPERSCRIPT.

Proof.

(i) Let Sβ€²=Pnβˆ–Ssuperscript𝑆′subscript𝑃𝑛𝑆S^{\prime}=P_{n}\setminus Sitalic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT βˆ– italic_S. Then

n=±𝐫n,S⁒𝐫n,Sβ€²,n𝐫n,S=±𝐫n,Sβ€².formulae-sequence𝑛plus-or-minussubscript𝐫𝑛𝑆subscript𝐫𝑛superscript𝑆′𝑛subscript𝐫𝑛𝑆plus-or-minussubscript𝐫𝑛superscript𝑆′n=\pm\mathbf{r}_{n,S}\mathbf{r}_{n,S^{\prime}},\quad\frac{n}{\mathbf{r}_{n,S}}%=\pm\mathbf{r}_{n,S^{\prime}}.italic_n = Β± bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , divide start_ARG italic_n end_ARG start_ARG bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT end_ARG = Β± bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT .

If p𝑝pitalic_p is a prime divisor of both 𝐫n,Ssubscript𝐫𝑛𝑆\mathbf{r}_{n,S}bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT and 𝐫n,Sβ€²subscript𝐫𝑛superscript𝑆′\mathbf{r}_{n,S^{\prime}}bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPTthen it must belong to both sets S𝑆Sitalic_S and Sβ€²superscript𝑆′S^{\prime}italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT. However, S𝑆Sitalic_S and Sβ€²superscript𝑆′S^{\prime}italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT do not meet each other. Hence,𝐫n,Ssubscript𝐫𝑛𝑆\mathbf{r}_{n,S}bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT and 𝐫n,Sβ€²=Β±n/𝐫n,Ssubscript𝐫𝑛superscript𝑆′plus-or-minus𝑛subscript𝐫𝑛𝑆\mathbf{r}_{n,S^{\prime}}=\pm n/\mathbf{r}_{n,S}bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = Β± italic_n / bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT have no common prime factors and therefore are relatively prime. This implies that the divisor𝐫n,Ssubscript𝐫𝑛𝑆\mathbf{r}_{n,S}bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT (and therefore βˆ’π«n,Ssubscript𝐫𝑛𝑆-\mathbf{r}_{n,S}- bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT) of n𝑛nitalic_n is saturated.

Conversely, suppose that c𝑐citalic_c is a saturated divisor of n𝑛nitalic_n. Then PcβŠ‚Pnsubscript𝑃𝑐subscript𝑃𝑛P_{c}\subset P_{n}italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT βŠ‚ italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT and

c=±∏p∈Prpec,p,1≀ec,p≀en,pβ’βˆ€p∈Pc.formulae-sequence𝑐plus-or-minussubscriptproduct𝑝subscriptπ‘ƒπ‘Ÿsuperscript𝑝subscript𝑒𝑐𝑝1subscript𝑒𝑐𝑝subscript𝑒𝑛𝑝for-all𝑝subscript𝑃𝑐c=\pm\prod_{p\in P_{r}}p^{e_{c,p}},\quad 1\leq e_{c,p}\leq e_{n,p}\ \forall p%\in P_{c}.italic_c = Β± ∏ start_POSTSUBSCRIPT italic_p ∈ italic_P start_POSTSUBSCRIPT italic_r end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_c , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , 1 ≀ italic_e start_POSTSUBSCRIPT italic_c , italic_p end_POSTSUBSCRIPT ≀ italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT βˆ€ italic_p ∈ italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT .

I claim that

ec,p=en,pβ’βˆ€p∈Pc,i.e.,d=±𝐫Pc.formulae-sequencesubscript𝑒𝑐𝑝subscript𝑒𝑛𝑝for-all𝑝subscript𝑃𝑐i.e.𝑑plus-or-minussubscript𝐫subscript𝑃𝑐e_{c,p}=e_{n,p}\ \forall p\in P_{c},\ \text{i.e.},\ d=\pm\mathbf{r}_{P_{c}}.italic_e start_POSTSUBSCRIPT italic_c , italic_p end_POSTSUBSCRIPT = italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT βˆ€ italic_p ∈ italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT , i.e. , italic_d = Β± bold_r start_POSTSUBSCRIPT italic_P start_POSTSUBSCRIPT italic_c end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

Indeed, suppose that ec,p<en,psubscript𝑒𝑐𝑝subscript𝑒𝑛𝑝e_{c,p}<e_{n,p}italic_e start_POSTSUBSCRIPT italic_c , italic_p end_POSTSUBSCRIPT < italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT for some p∈Pd𝑝subscript𝑃𝑑p\in P_{d}italic_p ∈ italic_P start_POSTSUBSCRIPT italic_d end_POSTSUBSCRIPT. Then p𝑝pitalic_p divides both c𝑐citalic_c and n/c𝑛𝑐n/citalic_n / italic_c,which contradicts the saturatedness of c𝑐citalic_c. This ends the proof.

(ii) It follows from (i) that the set of positive saturated divisors of n𝑛nitalic_n coincides with

{𝐫n,S∣SβŠ‚Pn}.conditional-setsubscript𝐫𝑛𝑆𝑆subscript𝑃𝑛\{\mathbf{r}_{n,S}\mid S\subset P_{n}\}.{ bold_r start_POSTSUBSCRIPT italic_n , italic_S end_POSTSUBSCRIPT ∣ italic_S βŠ‚ italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT } .

It is also clear that if S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are distinct subsets of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT then 𝐫n,S1≠𝐫n,S2subscript𝐫𝑛subscript𝑆1subscript𝐫𝑛subscript𝑆2\mathbf{r}_{n,S_{1}}\neq\mathbf{r}_{n,S_{2}}bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT β‰  bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT,because their sets of prime divisors (i.e., S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT) do not coincide.So, the number of positive saturated divisors of n𝑛nitalic_n equals the number of subsets of Pnsubscript𝑃𝑛P_{n}italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT, which is 2#⁒(Pn)superscript2#subscript𝑃𝑛2^{\#(P_{n})}2 start_POSTSUPERSCRIPT # ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT.

(iii) Since

c1=𝐫n,S1=∏p∈S1pen,p,c2=𝐫n,S2=∏p∈S1pen,p,formulae-sequencesubscript𝑐1subscript𝐫𝑛subscript𝑆1subscriptproduct𝑝subscript𝑆1superscript𝑝subscript𝑒𝑛𝑝subscript𝑐2subscript𝐫𝑛subscript𝑆2subscriptproduct𝑝subscript𝑆1superscript𝑝subscript𝑒𝑛𝑝c_{1}=\mathbf{r}_{n,S_{1}}=\prod_{p\in S_{1}}p^{e_{n,p}},\ c_{2}=\mathbf{r}_{n%,S_{2}}=\prod_{p\in S_{1}}p^{e_{n,p}},italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_p ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT , italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = ∏ start_POSTSUBSCRIPT italic_p ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT ,

the GCD c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT of c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT equals ∏p∈S1∩S2pen,psubscriptproduct𝑝subscript𝑆1subscript𝑆2superscript𝑝subscript𝑒𝑛𝑝\prod_{p\in S_{1}\cap S_{2}}p^{e_{n,p}}∏ start_POSTSUBSCRIPT italic_p ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT and the LCM c12subscript𝑐12c_{12}italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT of c1subscript𝑐1c_{1}italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and c2subscript𝑐2c_{2}italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPTequals ∏p∈S1βˆͺS2pen,psubscriptproduct𝑝subscript𝑆1subscript𝑆2superscript𝑝subscript𝑒𝑛𝑝\prod_{p\in S_{1}\cup S_{2}}p^{e_{n,p}}∏ start_POSTSUBSCRIPT italic_p ∈ italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆͺ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_p start_POSTSUPERSCRIPT italic_e start_POSTSUBSCRIPT italic_n , italic_p end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.Now the saturatedness of both c0subscript𝑐0c_{0}italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and c12subscript𝑐12c_{12}italic_c start_POSTSUBSCRIPT 12 end_POSTSUBSCRIPT follows from the already proven (i). In order to handle c10subscript𝑐10c_{10}italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT and c20subscript𝑐20c_{20}italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT, notice that

c10=𝐫n,S1𝐫n,S0=𝐫n,S1βˆ–S0,c20=𝐫n,S2𝐫n,S0=𝐫n,S2βˆ–S0.formulae-sequencesubscript𝑐10subscript𝐫𝑛subscript𝑆1subscript𝐫𝑛subscript𝑆0subscript𝐫𝑛subscript𝑆1subscript𝑆0subscript𝑐20subscript𝐫𝑛subscript𝑆2subscript𝐫𝑛subscript𝑆0subscript𝐫𝑛subscript𝑆2subscript𝑆0c_{10}=\frac{\mathbf{r}_{n,S_{1}}}{\mathbf{r}_{n,S_{0}}}=\mathbf{r}_{n,S_{1}%\setminus S_{0}},\quad c_{20}=\frac{\mathbf{r}_{n,S_{2}}}{\mathbf{r}_{n,S_{0}}%}=\mathbf{r}_{n,S_{2}\setminus S_{0}}.italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = divide start_ARG bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = divide start_ARG bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG start_ARG bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT end_ARG = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

Again, it follows from (i) that both c10subscript𝑐10c_{10}italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT and c20subscript𝑐20c_{20}italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT are saturated divisors of n𝑛nitalic_n.Since S1⁒Δ⁒S2subscript𝑆1Ξ”subscript𝑆2S_{1}\Delta S_{2}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is the disjoint union of S1βˆ–S0subscript𝑆1subscript𝑆0S_{1}\setminus S_{0}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT and S2βˆ–S0subscript𝑆2subscript𝑆0S_{2}\setminus S_{0}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT,

c1⁒c2c02=c10⁒c20=𝐫n,S1βˆ–S0⁒𝐫n,S2βˆ–S0=𝐫n,S1⁒Δ⁒S2,subscript𝑐1subscript𝑐2superscriptsubscript𝑐02subscript𝑐10subscript𝑐20subscript𝐫𝑛subscript𝑆1subscript𝑆0subscript𝐫𝑛subscript𝑆2subscript𝑆0subscript𝐫𝑛subscript𝑆1Ξ”subscript𝑆2\frac{c_{1}c_{2}}{c_{0}^{2}}=c_{10}c_{20}=\mathbf{r}_{n,S_{1}\setminus S_{0}}%\mathbf{r}_{n,S_{2}\setminus S_{0}}=\mathbf{r}_{n,S_{1}\Delta S_{2}},divide start_ARG italic_c start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG italic_c start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_c start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT italic_c start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_n , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ,

which is also saturated, in light of (i).

(iv) follows readily from (iii).

(v) Since n≑1(mod4)𝑛annotated1moduloabsent4n\equiv 1(\bmod 4)italic_n ≑ 1 ( roman_mod 4 ), the positive odd integer |n|=(βˆ’n)𝑛𝑛|n|=(-n)| italic_n | = ( - italic_n ) is congruent to 3333 modulo 4444and therefore is not a square. Hence, if β𝛽\betaitalic_Ξ² is a positive saturated divisor of n𝑛nitalic_n then|n|/β𝑛𝛽|n|/\beta| italic_n | / italic_Ξ² is also a positive saturated divisor of n𝑛nitalic_n while Ξ²β‰ |n|/β𝛽𝑛𝛽\beta\neq|n|/\betaitalic_Ξ² β‰  | italic_n | / italic_Ξ². Clearly,in the pair {Ξ²,|n|/Ξ²}𝛽𝑛𝛽\{\beta,|n|/\beta\}{ italic_Ξ² , | italic_n | / italic_Ξ² } there is precisely one element that is strictly less than |n|𝑛\sqrt{|n|}square-root start_ARG | italic_n | end_ARG.In light of (ii), the number of positive saturated divisors of n𝑛nitalic_n that satisfies this inequality is2#⁒(Pn)/2=2#⁒(Pn)βˆ’1superscript2#subscript𝑃𝑛2superscript2#subscript𝑃𝑛12^{\#(P_{n})}/2=2^{\#(P_{n})-1}2 start_POSTSUPERSCRIPT # ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) end_POSTSUPERSCRIPT / 2 = 2 start_POSTSUPERSCRIPT # ( italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ) - 1 end_POSTSUPERSCRIPT.∎

Let O=OD𝑂subscript𝑂𝐷O=O_{D}italic_O = italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT be an odd order with discriminant D𝐷Ditalic_D in a quadratic field K𝐾Kitalic_K. It follows from Lemma 5.1 combined with Remark 5.4that the odd integer D𝐷Ditalic_D is not a square, D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1\ (\bmod 4)italic_D ≑ 1 ( roman_mod 4 ) and

K=β„šβ’(D),O=β„€+℀⁒1+D2βŠ‚β„š+Dβ’β„š=K.formulae-sequenceπΎβ„šπ·π‘‚β„€β„€1𝐷2β„šπ·β„šπΎK={\mathbb{Q}}(\sqrt{D}),\quad O={\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D}}{%2}\subset{\mathbb{Q}}+\sqrt{D}\ {\mathbb{Q}}=K.italic_K = blackboard_Q ( square-root start_ARG italic_D end_ARG ) , italic_O = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG βŠ‚ blackboard_Q + square-root start_ARG italic_D end_ARG blackboard_Q = italic_K .

If Ξ±1,…,Ξ±nsubscript𝛼1…subscript𝛼𝑛\alpha_{1},\dots,\alpha_{n}italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT are elements of K𝐾Kitalic_K then we write[Ξ±1,…,Ξ±n]subscript𝛼1…subscript𝛼𝑛[\alpha_{1},\dots,\alpha_{n}][ italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] for the additive subgroup βˆ‘i=1n℀⁒αisuperscriptsubscript𝑖1𝑛℀subscript𝛼𝑖\sum_{i=1}^{n}{\mathbb{Z}}\ \alpha_{i}βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT blackboard_Z italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT of K𝐾Kitalic_Kgenerated by the set {Ξ±1,…,Ξ±n}subscript𝛼1…subscript𝛼𝑛\{\alpha_{1},\dots,\alpha_{n}\}{ italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT }. As usual, if A𝐴Aitalic_A and B𝐡Bitalic_B are additive subgroups of K𝐾Kitalic_Kthen we write A⁒B𝐴𝐡ABitalic_A italic_B for the additive subgroup of K𝐾Kitalic_K generated by all the products a⁒bπ‘Žπ‘abitalic_a italic_b (a∈A,b∈Bformulae-sequenceπ‘Žπ΄π‘π΅a\in A,b\in Bitalic_a ∈ italic_A , italic_b ∈ italic_B).For example, if A=[Ξ±1,…,Ξ±n],B=[ΞΌ1,…,ΞΌm]formulae-sequence𝐴subscript𝛼1…subscript𝛼𝑛𝐡subscriptπœ‡1…subscriptπœ‡π‘šA=[\alpha_{1},\dots,\alpha_{n}],\ B=[\mu_{1},\dots,\mu_{m}]italic_A = [ italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT ] , italic_B = [ italic_ΞΌ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_ΞΌ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] then

A⁒B=[Ξ±1⁒μ1,…,Ξ±i⁒μj,…,Ξ±n⁒μm]=βˆ‘i=1nβˆ‘j=1m℀⁒αi⁒μj.𝐴𝐡subscript𝛼1subscriptπœ‡1…subscript𝛼𝑖subscriptπœ‡π‘—β€¦subscript𝛼𝑛subscriptπœ‡π‘šsuperscriptsubscript𝑖1𝑛superscriptsubscript𝑗1π‘šβ„€subscript𝛼𝑖subscriptπœ‡π‘—AB=[\alpha_{1}\mu_{1},\dots,\alpha_{i}\mu_{j},\dots,\alpha_{n}\mu_{m}]=\sum_{i%=1}^{n}\sum_{j=1}^{m}{\mathbb{Z}}\ \alpha_{i}\mu_{j}.italic_A italic_B = [ italic_Ξ± start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_ΞΌ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ΞΌ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT , … , italic_Ξ± start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT italic_ΞΌ start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT ] = βˆ‘ start_POSTSUBSCRIPT italic_i = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT βˆ‘ start_POSTSUBSCRIPT italic_j = 1 end_POSTSUBSCRIPT start_POSTSUPERSCRIPT italic_m end_POSTSUPERSCRIPT blackboard_Z italic_Ξ± start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT italic_ΞΌ start_POSTSUBSCRIPT italic_j end_POSTSUBSCRIPT .

We write ΟƒπœŽ\sigmaitalic_Οƒ for the only nontrivial automorphism of the field K𝐾Kitalic_K defined by the formula

σ⁒(a+b⁒D)=aβˆ’b⁒Dβˆ€a,bβˆˆβ„š.formulae-sequenceπœŽπ‘Žπ‘π·π‘Žπ‘π·for-allπ‘Žπ‘β„š\sigma(a+b\sqrt{D})=a-b\sqrt{D}\quad\forall a,b\in{\mathbb{Q}}.italic_Οƒ ( italic_a + italic_b square-root start_ARG italic_D end_ARG ) = italic_a - italic_b square-root start_ARG italic_D end_ARG βˆ€ italic_a , italic_b ∈ blackboard_Q .

Clearly,

β„š=KΟƒ:={u∈Kβˆ£Οƒβ’(u)=u}.β„šsuperscript𝐾𝜎assignconditional-setπ‘’πΎπœŽπ‘’π‘’{\mathbb{Q}}=K^{\sigma}:=\{u\in K\mid\sigma(u)=u\}.blackboard_Q = italic_K start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT := { italic_u ∈ italic_K ∣ italic_Οƒ ( italic_u ) = italic_u } .(26)

It is known [2, Ch. II, Sect. 7] that

σ⁒(O)=O.πœŽπ‘‚π‘‚\sigma(O)=O.italic_Οƒ ( italic_O ) = italic_O .

In what follows, β𝛽\betaitalic_Ξ² is always an odd integer. Let us put

mΞ²:=Ξ²βˆ’12βˆˆβ„€,wΞ²=wΞ²,D:=Ξ²+D2=1+D2+mβ∈O.formulae-sequenceassignsubscriptπ‘šπ›½π›½12β„€subscript𝑀𝛽subscript𝑀𝛽𝐷assign𝛽𝐷21𝐷2subscriptπ‘šπ›½π‘‚m_{\beta}:=\frac{\beta-1}{2}\in{\mathbb{Z}},\quad w_{\beta}=w_{\beta,D}:=\frac%{\beta+\sqrt{D}}{2}=\frac{1+\sqrt{D}}{2}+m_{\beta}\in O.italic_m start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT := divide start_ARG italic_Ξ² - 1 end_ARG start_ARG 2 end_ARG ∈ blackboard_Z , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² , italic_D end_POSTSUBSCRIPT := divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + italic_m start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ∈ italic_O .(27)

We have

w1=1+D2,m1=0;w1=wΞ²βˆ’mΞ².formulae-sequencesubscript𝑀11𝐷2formulae-sequencesubscriptπ‘š10subscript𝑀1subscript𝑀𝛽subscriptπ‘šπ›½w_{1}=\frac{1+\sqrt{D}}{2},\quad m_{1}=0;\quad w_{1}=w_{\beta}-m_{\beta}.italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = 0 ; italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT .(28)

This implies that

O=[w1,1]=[wΞ²,1]βˆ€Ξ².formulae-sequence𝑂subscript𝑀11subscript𝑀𝛽1for-all𝛽O=[w_{1},1]=[w_{\beta},1]\quad\forall\ \beta.italic_O = [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , 1 ] = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , 1 ] βˆ€ italic_Ξ² .(29)

We also have

O=OD=℀⁒1+D2+℀⁒D=[w1,D],𝑂subscript𝑂𝐷℀1𝐷2℀𝐷subscript𝑀1𝐷O=O_{D}={\mathbb{Z}}\ \frac{1+\sqrt{D}}{2}+{\mathbb{Z}}\ \sqrt{D}=\left[w_{1},%\sqrt{D}\right],italic_O = italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT = blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + blackboard_Z square-root start_ARG italic_D end_ARG = [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ] ,(30)

in light of

D=2⁒w1βˆ’1∈O,1=2⁒w1βˆ’D∈[w1,D],formulae-sequence𝐷2subscript𝑀11𝑂12subscript𝑀1𝐷subscript𝑀1𝐷\sqrt{D}=2w_{1}-1\in O,\quad 1=2w_{1}-\sqrt{D}\in\left[w_{1},\sqrt{D}\right],square-root start_ARG italic_D end_ARG = 2 italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 1 ∈ italic_O , 1 = 2 italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - square-root start_ARG italic_D end_ARG ∈ [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ] ,

combined with first equality of (29).

Let us consider the β„€β„€{\mathbb{Z}}blackboard_Z-lattice

M⁒(Ξ²)=M⁒(Ξ²,D):=[wΞ²,Ξ²]=℀⁒β+D2+β„€β’Ξ²βŠ‚K𝑀𝛽𝑀𝛽𝐷assignsubscript𝑀𝛽𝛽℀𝛽𝐷2℀𝛽𝐾M(\beta)=M(\beta,D):=[w_{\beta},\beta]={\mathbb{Z}}\ \frac{\beta+\sqrt{D}}{2}+%{\mathbb{Z}}\ \beta\subset Kitalic_M ( italic_Ξ² ) = italic_M ( italic_Ξ² , italic_D ) := [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² ] = blackboard_Z divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + blackboard_Z italic_Ξ² βŠ‚ italic_K(31)

in K𝐾Kitalic_K.It follows from (30) that M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a subgroup of O=[wΞ²,1]𝑂subscript𝑀𝛽1O=[w_{\beta},1]italic_O = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , 1 ] and the corresponding index

[O:M(Ξ²)]=|Ξ²|.[O:M(\beta)]=|\beta|.[ italic_O : italic_M ( italic_Ξ² ) ] = | italic_Ξ² | .(32)

Taking into account that {wΞ²,Ξ²}subscript𝑀𝛽𝛽\{w_{\beta},\beta\}{ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² } is a basis of the β„šβ„š{\mathbb{Q}}blackboard_Q-vector space K𝐾Kitalic_K, we get

M⁒(Ξ²)βˆ©β„š=℀⁒β=M⁒(Ξ²)βˆ©β„€βŠ‚β„€.π‘€π›½β„šβ„€π›½π‘€π›½β„€β„€M(\beta)\cap{\mathbb{Q}}={\mathbb{Z}}\ \beta=M(\beta)\cap{\mathbb{Z}}\subset{%\mathbb{Z}}.italic_M ( italic_Ξ² ) ∩ blackboard_Q = blackboard_Z italic_Ξ² = italic_M ( italic_Ξ² ) ∩ blackboard_Z βŠ‚ blackboard_Z .(33)
Examples 7.3.
  • (i)

    If Ξ²=1𝛽1\beta=1italic_Ξ² = 1 then

    w1=1+D2,M⁒(1)=[w1,1]=℀⁒1+D2+℀⁒ 1=O.formulae-sequencesubscript𝑀11𝐷2𝑀1subscript𝑀11β„€1𝐷2β„€1𝑂w_{1}=\frac{1+\sqrt{D}}{2},M(1)=[w_{1},1]={\mathbb{Z}}\ \frac{1+\sqrt{D}}{2}+{%\mathbb{Z}}\ 1=O.italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_M ( 1 ) = [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , 1 ] = blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + blackboard_Z 1 = italic_O .
  • (ii)

    If Ξ²=D𝛽𝐷\beta=Ditalic_Ξ² = italic_D then, in light of (30),

    M⁒(D)=[D+D2,D]=D⁒(1+D2⁒℀+D⁒℀)=D⁒[w1,1]=D⁒O.𝑀𝐷𝐷𝐷2𝐷𝐷1𝐷2℀𝐷℀𝐷subscript𝑀11𝐷𝑂M(D)=\left[\frac{D+\sqrt{D}}{2},D\right]=\sqrt{D}\ \left(\frac{1+\sqrt{D}}{2}{%\mathbb{Z}}+\sqrt{D}{\mathbb{Z}}\right)=\sqrt{D}\ \left[w_{1},1\right]=\sqrt{D%}\ O.italic_M ( italic_D ) = [ divide start_ARG italic_D + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_D ] = square-root start_ARG italic_D end_ARG ( divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z + square-root start_ARG italic_D end_ARG blackboard_Z ) = square-root start_ARG italic_D end_ARG [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , 1 ] = square-root start_ARG italic_D end_ARG italic_O .
  • (iii)
    M⁒(βˆ’Ξ²)=[Ξ²,wβˆ’Ξ²]=[Ξ²,Ξ²+wβˆ’Ξ²]=[Ξ²,wΞ²]=[βˆ’Ξ²,wΞ²]=M⁒(Ξ²),𝑀𝛽𝛽subscript𝑀𝛽𝛽𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽𝑀𝛽M(-\beta)=[\beta,w_{-\beta}]=[\beta,\beta+w_{-\beta}]=[\beta,w_{\beta}]=[-%\beta,w_{\beta}]=M(\beta),italic_M ( - italic_Ξ² ) = [ italic_Ξ² , italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ] = [ italic_Ξ² , italic_Ξ² + italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ] = [ italic_Ξ² , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ] = [ - italic_Ξ² , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ] = italic_M ( italic_Ξ² ) ,

    because

    Ξ²+wβˆ’Ξ²=Ξ²+βˆ’Ξ²+D2=Ξ²+D2=wΞ².𝛽subscript𝑀𝛽𝛽𝛽𝐷2𝛽𝐷2subscript𝑀𝛽\beta+w_{-\beta}=\beta+\frac{-\beta+\sqrt{D}}{2}=\frac{\beta+\sqrt{D}}{2}=w_{%\beta}.italic_Ξ² + italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT = italic_Ξ² + divide start_ARG - italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT .

    So,

    M⁒(βˆ’Ξ²)=M⁒(Ξ²).𝑀𝛽𝑀𝛽M(-\beta)=M(\beta).italic_M ( - italic_Ξ² ) = italic_M ( italic_Ξ² ) .(34)
  • (iv)

    Since

    σ⁒(wΞ²)=σ⁒(Ξ²+D2)=Ξ²βˆ’D2=Ξ²βˆ’wΞ²,𝜎subscriptπ‘€π›½πœŽπ›½π·2𝛽𝐷2𝛽subscript𝑀𝛽\sigma(w_{\beta})=\sigma\left(\frac{\beta+\sqrt{D}}{2}\right)=\frac{\beta-%\sqrt{D}}{2}=\beta-w_{\beta},italic_Οƒ ( italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = italic_Οƒ ( divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ) = divide start_ARG italic_Ξ² - square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_Ξ² - italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ,

    we get

    σ⁒(M⁒(Ξ²))=[Ξ²,σ⁒(wΞ²)]=[Ξ²,Ξ²βˆ’wΞ²]=M⁒(Ξ²).πœŽπ‘€π›½π›½πœŽsubscript𝑀𝛽𝛽𝛽subscript𝑀𝛽𝑀𝛽\sigma(M(\beta))=[\beta,\sigma(w_{\beta})]=[\beta,\beta-w_{\beta}]=M(\beta).italic_Οƒ ( italic_M ( italic_Ξ² ) ) = [ italic_Ξ² , italic_Οƒ ( italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) ] = [ italic_Ξ² , italic_Ξ² - italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ] = italic_M ( italic_Ξ² ) .

    So,

    σ⁒(M⁒(Ξ²))=M⁒(Ξ²).πœŽπ‘€π›½π‘€π›½\sigma(M(\beta))=M(\beta).italic_Οƒ ( italic_M ( italic_Ξ² ) ) = italic_M ( italic_Ξ² ) .(35)

    Actually, we have checked that

    M⁒(Ξ²,D)=M⁒(Ξ²)=Ξ²+D2⁒℀+β⁒Z=Ξ²+(βˆ’D)2⁒℀+β⁒Z.𝑀𝛽𝐷𝑀𝛽𝛽𝐷2℀𝛽𝑍𝛽𝐷2℀𝛽𝑍M(\beta,D)=M(\beta)=\frac{\beta+\sqrt{D}}{2}\ {\mathbb{Z}}+\beta\ Z=\frac{%\beta+(-\sqrt{D})}{2}\ {\mathbb{Z}}+\beta\ Z.italic_M ( italic_Ξ² , italic_D ) = italic_M ( italic_Ξ² ) = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG blackboard_Z + italic_Ξ² italic_Z = divide start_ARG italic_Ξ² + ( - square-root start_ARG italic_D end_ARG ) end_ARG start_ARG 2 end_ARG blackboard_Z + italic_Ξ² italic_Z .

    This implies that M⁒(Ξ²,D)𝑀𝛽𝐷M(\beta,D)italic_M ( italic_Ξ² , italic_D ) does not depend on the choice of a square root of D𝐷Ditalic_D.

  • (v)

    We have

    M⁒(Ξ²)=[wΞ²,Ξ²]=[wΞ²,2⁒wΞ²βˆ’Ξ²]=[wΞ²,D],𝑀𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽2subscript𝑀𝛽𝛽subscript𝑀𝛽𝐷M(\beta)=[w_{\beta},\beta]=[w_{\beta},2w_{\beta}-\beta]=[w_{\beta},\sqrt{D}],italic_M ( italic_Ξ² ) = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² ] = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , 2 italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_Ξ² ] = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ] ,

    because

    2⁒wΞ²βˆ’Ξ²=2β‹…Ξ²+D2βˆ’Ξ²=D.2subscript𝑀𝛽𝛽⋅2𝛽𝐷2𝛽𝐷2w_{\beta}-\beta=2\cdot\frac{\beta+\sqrt{D}}{2}-\beta=\sqrt{D}.2 italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_Ξ² = 2 β‹… divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG - italic_Ξ² = square-root start_ARG italic_D end_ARG .

    So,

    M⁒(Ξ²)=[wΞ²,D]βˆ‹D.𝑀𝛽subscript𝑀𝛽𝐷contains𝐷M(\beta)=[w_{\beta},\sqrt{D}]\ni\sqrt{D}.italic_M ( italic_Ξ² ) = [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ] βˆ‹ square-root start_ARG italic_D end_ARG .(36)
  • (iv)

    Suppose that β𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D. Then

    Ξ²~=βˆ’DΞ²~𝛽𝐷𝛽\tilde{\beta}=-\frac{D}{\beta}over~ start_ARG italic_Ξ² end_ARG = - divide start_ARG italic_D end_ARG start_ARG italic_Ξ² end_ARG

    is an odd integer and

    wΞ²~Ξ²~=wβˆ’Ξ²D.subscript𝑀~𝛽~𝛽subscript𝑀𝛽𝐷\frac{w_{\tilde{\beta}}}{\tilde{\beta}}=\frac{w_{-\beta}}{\sqrt{D}}.divide start_ARG italic_w start_POSTSUBSCRIPT over~ start_ARG italic_Ξ² end_ARG end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG = divide start_ARG italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_D end_ARG end_ARG .(37)

    Indeed,

    wβˆ’Ξ²D=βˆ’Ξ²+D2D=Dβˆ’2⁒D/Ξ²+12=subscript𝑀𝛽𝐷𝛽𝐷2𝐷𝐷2𝐷𝛽12absent\frac{w_{-\beta}}{\sqrt{D}}=\frac{\frac{-\beta+\sqrt{D}}{2}}{\sqrt{D}}=\frac{%\sqrt{D}}{-2D/\beta}+\frac{1}{2}=divide start_ARG italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_D end_ARG end_ARG = divide start_ARG divide start_ARG - italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG end_ARG start_ARG square-root start_ARG italic_D end_ARG end_ARG = divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG - 2 italic_D / italic_Ξ² end_ARG + divide start_ARG 1 end_ARG start_ARG 2 end_ARG =
    12+D2⁒β~=1Ξ²~β‹…Ξ²~+D2=wΞ²~Ξ²~,12𝐷2~𝛽⋅1~𝛽~𝛽𝐷2subscript𝑀~𝛽~𝛽\frac{1}{2}+\frac{\sqrt{D}}{2\tilde{\beta}}=\frac{1}{\tilde{\beta}}\cdot\frac{%\tilde{\beta}+\sqrt{D}}{2}=\frac{w_{\tilde{\beta}}}{\tilde{\beta}},divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 over~ start_ARG italic_Ξ² end_ARG end_ARG = divide start_ARG 1 end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG β‹… divide start_ARG over~ start_ARG italic_Ξ² end_ARG + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_w start_POSTSUBSCRIPT over~ start_ARG italic_Ξ² end_ARG end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG ,

    which proves (37).It follows that

    M⁒(Ξ²)=M⁒(βˆ’Ξ²)=[wβˆ’Ξ²,D]=D⁒[wβˆ’Ξ²D,1]=𝑀𝛽𝑀𝛽subscript𝑀𝛽𝐷𝐷subscript𝑀𝛽𝐷1absentM(\beta)=M(-\beta)=[w_{-\beta},\sqrt{D}]=\sqrt{D}\left[\frac{w_{-\beta}}{\sqrt%{D}},1\right]=italic_M ( italic_Ξ² ) = italic_M ( - italic_Ξ² ) = [ italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ] = square-root start_ARG italic_D end_ARG [ divide start_ARG italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT end_ARG start_ARG square-root start_ARG italic_D end_ARG end_ARG , 1 ] =
    D⁒[wΞ²~Ξ²~,1]=DΞ²~⁒[wΞ²~,Ξ²~]=DΞ²~⁒M⁒(Ξ²~).𝐷subscript𝑀~𝛽~𝛽1𝐷~𝛽subscript𝑀~𝛽~𝛽𝐷~𝛽𝑀~𝛽\sqrt{D}\left[\frac{w_{\tilde{\beta}}}{\tilde{\beta}},1\right]=\frac{\sqrt{D}}%{\tilde{\beta}}\left[w_{\tilde{\beta}},\tilde{\beta}\right]=\frac{\sqrt{D}}{%\tilde{\beta}}M(\tilde{\beta}).square-root start_ARG italic_D end_ARG [ divide start_ARG italic_w start_POSTSUBSCRIPT over~ start_ARG italic_Ξ² end_ARG end_POSTSUBSCRIPT end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG , 1 ] = divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG [ italic_w start_POSTSUBSCRIPT over~ start_ARG italic_Ξ² end_ARG end_POSTSUBSCRIPT , over~ start_ARG italic_Ξ² end_ARG ] = divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG italic_M ( over~ start_ARG italic_Ξ² end_ARG ) .

    This implies that M⁒(Ξ²)=(D/Ξ²~)⁒M⁒(Ξ²~)𝑀𝛽𝐷~𝛽𝑀~𝛽M(\beta)=\left(\sqrt{D}/\tilde{\beta}\right)M(\tilde{\beta})italic_M ( italic_Ξ² ) = ( square-root start_ARG italic_D end_ARG / over~ start_ARG italic_Ξ² end_ARG ) italic_M ( over~ start_ARG italic_Ξ² end_ARG ) and therefore

    M⁒(Ξ²~)=Ξ²~D⁒M⁒(Ξ²)=(βˆ’DΞ²)⁒M⁒(Ξ²)=Dβ⁒M⁒(Ξ²).𝑀~𝛽~𝛽𝐷𝑀𝛽𝐷𝛽𝑀𝛽𝐷𝛽𝑀𝛽M(\tilde{\beta})=\frac{\tilde{\beta}}{\sqrt{D}}M(\beta)=\left(-\frac{\sqrt{D}}%{\beta}\right)M(\beta)=\frac{\sqrt{D}}{\beta}M(\beta).italic_M ( over~ start_ARG italic_Ξ² end_ARG ) = divide start_ARG over~ start_ARG italic_Ξ² end_ARG end_ARG start_ARG square-root start_ARG italic_D end_ARG end_ARG italic_M ( italic_Ξ² ) = ( - divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG italic_Ξ² end_ARG ) italic_M ( italic_Ξ² ) = divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG italic_Ξ² end_ARG italic_M ( italic_Ξ² ) .(38)
Theorem 7.4.
  • (i)

    The lattice M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is an ideal in the ring O𝑂Oitalic_O if and only if β𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D.

  • (ii)

    Suppose that β𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D. Then the following conditions are equivalent.

    1. (1)

      M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a proper O𝑂Oitalic_O-ideal, i.e.,

      O={μ∈K∣μ⁒M⁒(Ξ²)βŠ‚M⁒(Ξ²)}.𝑂conditional-setπœ‡πΎπœ‡π‘€π›½π‘€π›½O=\{\mu\in K\mid\mu M(\beta)\subset M(\beta)\}.italic_O = { italic_ΞΌ ∈ italic_K ∣ italic_ΞΌ italic_M ( italic_Ξ² ) βŠ‚ italic_M ( italic_Ξ² ) } .(39)
    2. (2)

      β𝛽\betaitalic_Ξ² is a saturated divisor of D𝐷Ditalic_D, i.e.,the integers β𝛽\betaitalic_Ξ² and D/β𝐷𝛽D/\betaitalic_D / italic_Ξ² are relatively prime.

    If these conditions hold then M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a projective (invertible) O𝑂Oitalic_O-module of rank 1111and

    M⁒(Ξ²)⁒M⁒(Ξ²)=β⁒O.𝑀𝛽𝑀𝛽𝛽𝑂M(\beta)M(\beta)=\beta O.italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) = italic_Ξ² italic_O .(40)
  • (iii)

    Suppose that integers Ξ²1subscript𝛽1\beta_{1}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ²2subscript𝛽2\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are relatively prime saturated divisors of D𝐷Ditalic_D. Then their product Ξ²1⁒β2subscript𝛽1subscript𝛽2\beta_{1}\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is also a saturated divisor of D𝐷Ditalic_D and

    M⁒(Ξ²1)⁒M⁒(Ξ²2)=M⁒(Ξ²1⁒β2).𝑀subscript𝛽1𝑀subscript𝛽2𝑀subscript𝛽1subscript𝛽2M(\beta_{1})M(\beta_{2})=M(\beta_{1}\beta_{2}).italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .(41)

In the course of the proof we will needthe following multiplication table that will be proven later in this section.

Lemma 7.5 (Multiplication Table).

Let Ξ²1,Ξ²2subscript𝛽1subscript𝛽2\beta_{1},\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, and (of course) β𝛽\betaitalic_Ξ² be odd integers. Then the following equalities and inclusions hold.

  • (i)

    wβ⁒wβˆ’Ξ²=Dβˆ’Ξ²24βˆˆβ„€.subscript𝑀𝛽subscript𝑀𝛽𝐷superscript𝛽24β„€w_{\beta}w_{-\beta}=\frac{D-\beta^{2}}{4}\in{\mathbb{Z}}.italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT = divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG ∈ blackboard_Z .

  • (ii)

    wΞ²2=β⁒wΞ²+Dβˆ’Ξ²24.superscriptsubscript𝑀𝛽2𝛽subscript𝑀𝛽𝐷superscript𝛽24w_{\beta}^{2}=\beta w_{\beta}+\frac{D-\beta^{2}}{4}.italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

  • (iii)

    w1⁒wΞ²=(Ξ²βˆ’mΞ²)⁒wΞ²+Dβˆ’Ξ²24.subscript𝑀1subscript𝑀𝛽𝛽subscriptπ‘šπ›½subscript𝑀𝛽𝐷superscript𝛽24w_{1}w_{\beta}=(\beta-m_{\beta})w_{\beta}+\frac{D-\beta^{2}}{4}.italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = ( italic_Ξ² - italic_m start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

    In particular, w1⁒wβ∈M⁒(Ξ²)subscript𝑀1subscript𝑀𝛽𝑀𝛽w_{1}w_{\beta}\in M(\beta)italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² ) if and only if β∣Dconditional𝛽𝐷\beta\mid Ditalic_Ξ² ∣ italic_D.

  • (iv)
    M⁒(Ξ²1)⁒M⁒(Ξ²2)βˆ‹Ξ²1⁒wΞ²2=wΞ²1⁒β2+mΞ²1⁒D∈M⁒(Ξ²1⁒β2);contains𝑀subscript𝛽1𝑀subscript𝛽2subscript𝛽1subscript𝑀subscript𝛽2subscript𝑀subscript𝛽1subscript𝛽2subscriptπ‘šsubscript𝛽1𝐷𝑀subscript𝛽1subscript𝛽2M(\beta_{1})M(\beta_{2})\ni\beta_{1}w_{\beta_{2}}=w_{\beta_{1}\beta_{2}}+m_{%\beta_{1}}\sqrt{D}\in M(\beta_{1}\beta_{2});italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βˆ‹ italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ;(42)
    M⁒(Ξ²1)⁒M⁒(Ξ²2)βˆ‹wΞ²1⁒β2=wΞ²1⁒β2+mΞ²2⁒D∈M⁒(Ξ²1⁒β2).contains𝑀subscript𝛽1𝑀subscript𝛽2subscript𝑀subscript𝛽1subscript𝛽2subscript𝑀subscript𝛽1subscript𝛽2subscriptπ‘šsubscript𝛽2𝐷𝑀subscript𝛽1subscript𝛽2M(\beta_{1})M(\beta_{2})\ni w_{\beta_{1}}\beta_{2}=w_{\beta_{1}\beta_{2}}+m_{%\beta_{2}}\sqrt{D}\in M(\beta_{1}\beta_{2}).italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βˆ‹ italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .
  • (v)
    wΞ²1⁒wΞ²2=Ξ²1⁒β2⁒γ+12+Ξ²1+Ξ²22⁒D2where⁒γ:=DΞ²1⁒β2.formulae-sequencesubscript𝑀subscript𝛽1subscript𝑀subscript𝛽2subscript𝛽1subscript𝛽2𝛾12subscript𝛽1subscript𝛽22𝐷2assignwhere𝛾𝐷subscript𝛽1subscript𝛽2w_{\beta_{1}}w_{\beta_{2}}=\frac{\beta_{1}\beta_{2}\frac{\gamma+1}{2}+\frac{%\beta_{1}+\beta_{2}}{2}\sqrt{D}}{2}\quad\text{where}\ \gamma:=\frac{D}{\beta_{%1}\beta_{2}}.italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG italic_Ξ³ + 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG where italic_Ξ³ := divide start_ARG italic_D end_ARG start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG .(43)
Proof of Theorem 7.4 (modulo Lemma 7.5.

(i) We need to find out for which β𝛽\betaitalic_Ξ²

1+D2β‹…Ξ²βˆˆM⁒(Ξ²),1+D2β‹…Ξ²+D2∈M⁒(Ξ²).formulae-sequenceβ‹…1𝐷2𝛽𝑀𝛽⋅1𝐷2𝛽𝐷2𝑀𝛽\frac{1+\sqrt{D}}{2}\cdot\beta\in M(\beta),\quad\frac{1+\sqrt{D}}{2}\cdot\frac%{\beta+\sqrt{D}}{2}\in M(\beta).divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… italic_Ξ² ∈ italic_M ( italic_Ξ² ) , divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_M ( italic_Ξ² ) .

The first inclusion holds without any additional conditions on β𝛽\betaitalic_Ξ². Indeed,

1+D2β‹…Ξ²=Ξ²+β⁒D2=β⁒β+D2+Ξ²βˆ’Ξ²22=β‹…1𝐷2𝛽𝛽𝛽𝐷2𝛽𝛽𝐷2𝛽superscript𝛽22absent\frac{1+\sqrt{D}}{2}\cdot\beta=\frac{\beta+\beta\sqrt{D}}{2}=\beta\frac{\beta+%\sqrt{D}}{2}+\frac{\beta-\beta^{2}}{2}=divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… italic_Ξ² = divide start_ARG italic_Ξ² + italic_Ξ² square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_Ξ² divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 2 end_ARG =
β⁒β+D2+Ξ²βˆ’12⁒β=β⁒wΞ²+m⁒(Ξ²)⁒β∈[wΞ²,Ξ²]=M⁒(Ξ²).𝛽𝛽𝐷2𝛽12𝛽𝛽subscriptπ‘€π›½π‘šπ›½π›½subscript𝑀𝛽𝛽𝑀𝛽\beta\frac{\beta+\sqrt{D}}{2}+\frac{\beta-1}{2}\beta=\beta w_{\beta}+m(\beta)%\beta\in[w_{\beta},\beta]=M(\beta).italic_Ξ² divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² - 1 end_ARG start_ARG 2 end_ARG italic_Ξ² = italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + italic_m ( italic_Ξ² ) italic_Ξ² ∈ [ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² ] = italic_M ( italic_Ξ² ) .

Concerning the second inclusion, recall ((28) and Lemma 7.5(i,ii)) that

w1=wΞ²βˆ’m,(Dβˆ’Ξ²2)/4βˆˆβ„€,wΞ²2=β⁒wΞ²+(Dβˆ’Ξ²2)/4.formulae-sequencesubscript𝑀1subscriptπ‘€π›½π‘šformulae-sequence𝐷superscript𝛽24β„€superscriptsubscript𝑀𝛽2𝛽subscript𝑀𝛽𝐷superscript𝛽24w_{1}=w_{\beta}-m,\quad(D-\beta^{2})/4\in{\mathbb{Z}},\quad w_{\beta}^{2}=%\beta w_{\beta}+(D-\beta^{2})/4.italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_m , ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 ∈ blackboard_Z , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 .

This implies that

w1wΞ²=wΞ²βˆ’m)wΞ²=wΞ²2βˆ’mwΞ²=w_{1}w_{\beta}=w_{\beta}-m)w_{\beta}=w_{\beta}^{2}-mw_{\beta}=italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_m ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_m italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT =
(β⁒w+(Dβˆ’Ξ²2)/4)βˆ’m⁒wΞ²=(Ξ²βˆ’m)⁒wΞ²+Dβˆ’Ξ²24⁒β⋅β.𝛽𝑀𝐷superscript𝛽24π‘šsubscriptπ‘€π›½π›½π‘šsubscript𝑀𝛽⋅𝐷superscript𝛽24𝛽𝛽\left(\beta w+(D-\beta^{2})/4\right)-mw_{\beta}=(\beta-m)w_{\beta}+\frac{D-%\beta^{2}}{4\beta}\cdot\beta.( italic_Ξ² italic_w + ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 ) - italic_m italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = ( italic_Ξ² - italic_m ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 italic_Ξ² end_ARG β‹… italic_Ξ² .

Since (Ξ²βˆ’m)⁒wΞ²π›½π‘šsubscript𝑀𝛽(\beta-m)w_{\beta}( italic_Ξ² - italic_m ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT obviously lies in M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ), the product w1⁒wΞ²subscript𝑀1subscript𝑀𝛽w_{1}w_{\beta}italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT liesin M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) if and only if the integer (Dβˆ’Ξ²2)/4𝐷superscript𝛽24(D-\beta^{2})/4( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 lies in M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ). In light of (33), this means that (Dβˆ’Ξ²2)/4𝐷superscript𝛽24(D-\beta^{2})/4( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 is divisible by β𝛽\betaitalic_Ξ². Since 4444 and odd β𝛽\betaitalic_Ξ² are relatively prime, the divisibility condition means that Ξ²|(Dβˆ’Ξ²2)conditional𝛽𝐷superscript𝛽2\beta|(D-\beta^{2})italic_Ξ² | ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ), i.e.,β𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D. This ends the proof of (i).

(ii) Since β𝛽\betaitalic_Ξ² divides D𝐷Ditalic_D, the ratio Ξ²~=(Dβˆ’Ξ²2)/(4⁒β)~𝛽𝐷superscript𝛽24𝛽\tilde{\beta}=(D-\beta^{2})/(4\beta)over~ start_ARG italic_Ξ² end_ARG = ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / ( 4 italic_Ξ² ) is an integer and

β⁒β~=Dβˆ’Ξ²24.𝛽~𝛽𝐷superscript𝛽24\beta\tilde{\beta}=\frac{D-\beta^{2}}{4}.italic_Ξ² over~ start_ARG italic_Ξ² end_ARG = divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

Case 1 Suppose that D/β𝐷𝛽D/\betaitalic_D / italic_Ξ² is relatively prime to β𝛽\betaitalic_Ξ². Then β𝛽\betaitalic_Ξ² and Ξ²~~𝛽\tilde{\beta}over~ start_ARG italic_Ξ² end_ARG are also relatively prime.

By Lemma 7.5(i) and Example 7.3(iii),

wβ⁒wβˆ’Ξ²=(Dβˆ’Ξ²2)/4=β⁒β~,M⁒(Ξ²)=M⁒(βˆ’Ξ²)=[Ξ²,wβˆ’Ξ²].formulae-sequencesubscript𝑀𝛽subscript𝑀𝛽𝐷superscript𝛽24𝛽~𝛽𝑀𝛽𝑀𝛽𝛽subscript𝑀𝛽w_{\beta}w_{-\beta}=(D-\beta^{2})/4=\beta\tilde{\beta},\quad M(\beta)=M(-\beta%)=[\beta,w_{-\beta}].italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT = ( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 = italic_Ξ² over~ start_ARG italic_Ξ² end_ARG , italic_M ( italic_Ξ² ) = italic_M ( - italic_Ξ² ) = [ italic_Ξ² , italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ] .

This implies that

M⁒(Ξ²)⁒M⁒(Ξ²)=M⁒(Ξ²)⁒M⁒(βˆ’Ξ²)=[Ξ²,wΞ²]⁒[Ξ²,wβˆ’Ξ²]=𝑀𝛽𝑀𝛽𝑀𝛽𝑀𝛽𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽absentM(\beta)M(\beta)=M(\beta)M(-\beta)=[\beta,w_{\beta}][\beta,w_{-\beta}]=italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) = italic_M ( italic_Ξ² ) italic_M ( - italic_Ξ² ) = [ italic_Ξ² , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ] [ italic_Ξ² , italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ] =
[Ξ²2,β⁒wβˆ’Ξ²,wβ⁒β,wβ⁒wβˆ’Ξ²]=[Ξ²2,β⁒wβˆ’Ξ²,β⁒wΞ²,β⁒β~]=superscript𝛽2𝛽subscript𝑀𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽subscript𝑀𝛽superscript𝛽2𝛽subscript𝑀𝛽𝛽subscript𝑀𝛽𝛽~𝛽absent[\beta^{2},\beta w_{-\beta},w_{\beta}\beta,w_{\beta}w_{-\beta}]=[\beta^{2},%\beta w_{-\beta},\beta w_{\beta},\beta\tilde{\beta}]=[ italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_Ξ² italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_Ξ² , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ] = [ italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT , italic_Ξ² italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² over~ start_ARG italic_Ξ² end_ARG ] =
β⁒[Ξ²,Ξ²~,wβˆ’Ξ²,wΞ²].𝛽𝛽~𝛽subscript𝑀𝛽subscript𝑀𝛽\beta\ [\beta,\tilde{\beta},w_{-\beta},w_{\beta}].italic_Ξ² [ italic_Ξ² , over~ start_ARG italic_Ξ² end_ARG , italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ] .

Since β𝛽\betaitalic_Ξ² and Ξ²~~𝛽\tilde{\beta}over~ start_ARG italic_Ξ² end_ARG are relatively prime integers,

[Ξ²,Ξ²~]=β„€.𝛽~𝛽℀[\beta,\tilde{\beta}]={\mathbb{Z}}.[ italic_Ξ² , over~ start_ARG italic_Ξ² end_ARG ] = blackboard_Z .

This implies that

M⁒(Ξ²)⁒M⁒(Ξ²)=β⁒(β„€+℀⁒wΞ²+℀⁒wβˆ’Ξ²)=β⁒((β„€+wβ⁒℀)+(β„€+wβˆ’Ξ²β’β„€))=𝑀𝛽𝑀𝛽𝛽℀℀subscript𝑀𝛽℀subscript𝑀𝛽𝛽℀subscript𝑀𝛽℀℀subscript𝑀𝛽℀absentM(\beta)M(\beta)=\beta\left({\mathbb{Z}}+{\mathbb{Z}}w_{\beta}+{\mathbb{Z}}w_{%-\beta}\right)=\beta\left(\left({\mathbb{Z}}+w_{\beta}{\mathbb{Z}}\right)+%\left({\mathbb{Z}}+w_{-\beta}{\mathbb{Z}}\right)\right)=italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) = italic_Ξ² ( blackboard_Z + blackboard_Z italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + blackboard_Z italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT ) = italic_Ξ² ( ( blackboard_Z + italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT blackboard_Z ) + ( blackboard_Z + italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT blackboard_Z ) ) =
β⁒(O+O)=β⁒O𝛽𝑂𝑂𝛽𝑂\beta(O+O)=\beta Oitalic_Ξ² ( italic_O + italic_O ) = italic_Ξ² italic_O

(here we use (29)). So, we have proven that

M⁒(Ξ²)⁒M⁒(Ξ²)=β⁒O.𝑀𝛽𝑀𝛽𝛽𝑂M(\beta)M(\beta)=\beta O.italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) = italic_Ξ² italic_O .(44)

According to the already proven (i), M𝑀Mitalic_M is an ideal in the ring O𝑂Oitalic_O and therefore is an O𝑂Oitalic_O-submodule in the field K𝐾Kitalic_K. The fractional O𝑂Oitalic_O-ideal

M~⁒(Ξ²):=1β⁒M⁒(Ξ²)βŠ‚Kassign~𝑀𝛽1𝛽𝑀𝛽𝐾\tilde{M}(\beta):=\frac{1}{\beta}M(\beta)\subset Kover~ start_ARG italic_M end_ARG ( italic_Ξ² ) := divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG italic_M ( italic_Ξ² ) βŠ‚ italic_K

is also an O𝑂Oitalic_O-submodule in K𝐾Kitalic_K. It follows from (44) that

M(Ξ²)M~(Ξ²)=M(Ξ²)(1Ξ²M(Ξ²)))=1Ξ²(M(Ξ²)M(Ξ²))=1Ξ²(Ξ²O)=O.M(\beta)\tilde{M}(\beta)=M(\beta)\left(\frac{1}{\beta}M(\beta))\right)=\frac{1%}{\beta}\left(M(\beta)M(\beta)\right)=\frac{1}{\beta}(\beta O)=O.italic_M ( italic_Ξ² ) over~ start_ARG italic_M end_ARG ( italic_Ξ² ) = italic_M ( italic_Ξ² ) ( divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG italic_M ( italic_Ξ² ) ) ) = divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG ( italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) ) = divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG ( italic_Ξ² italic_O ) = italic_O .

Hence,M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is an invertible O𝑂Oitalic_O-submodule of the field K𝐾Kitalic_K. By [3, Ch. 2, Sect. 5, n 6, Th. 4], M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a projective O𝑂Oitalic_O-module of rank 1111.

Now let us check thatM⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a proper O𝑂Oitalic_O-ideal. Indeed,let u𝑒uitalic_u be an element of K𝐾Kitalic_K such that u⁒M⁒(Ξ²)βŠ‚M⁒(Ξ²)𝑒𝑀𝛽𝑀𝛽uM(\beta)\subset M(\beta)italic_u italic_M ( italic_Ξ² ) βŠ‚ italic_M ( italic_Ξ² ). We need to check that u∈O𝑒𝑂u\in Oitalic_u ∈ italic_O. Indeed, we have

O=M⁒(Ξ²)⁒M~⁒(Ξ²)βŠƒ(u⁒M⁒(Ξ²))⁒M~=u⁒(M⁒(Ξ²)⁒M~⁒(Ξ²))=u⁒O.𝑂𝑀𝛽~𝑀𝛽superset-of𝑒𝑀𝛽~𝑀𝑒𝑀𝛽~𝑀𝛽𝑒𝑂O=M(\beta)\tilde{M}(\beta)\supset\left(uM(\beta)\right)\tilde{M}=u(M(\beta)%\tilde{M}(\beta))=uO.italic_O = italic_M ( italic_Ξ² ) over~ start_ARG italic_M end_ARG ( italic_Ξ² ) βŠƒ ( italic_u italic_M ( italic_Ξ² ) ) over~ start_ARG italic_M end_ARG = italic_u ( italic_M ( italic_Ξ² ) over~ start_ARG italic_M end_ARG ( italic_Ξ² ) ) = italic_u italic_O .

So, u⁒OβŠƒO𝑂𝑒𝑂uO\supset Oitalic_u italic_O βŠƒ italic_O. Since 1∈O1𝑂1\in O1 ∈ italic_O, we get u=uβ‹…1∈O𝑒⋅𝑒1𝑂u=u\cdot 1\in Oitalic_u = italic_u β‹… 1 ∈ italic_O, i.e., u∈O𝑒𝑂u\in Oitalic_u ∈ italic_O.(See also [3, Ch. 2, Sect. 5. Ex. 9b].)

Case 2 Suppose that the integer D/β𝐷𝛽D/\betaitalic_D / italic_Ξ² is not relatively prime to β𝛽\betaitalic_Ξ². We are going to prove that the O𝑂Oitalic_O-ideal M⁒(Ξ²)=M⁒(Ξ²,D)𝑀𝛽𝑀𝛽𝐷M(\beta)=M(\beta,D)italic_M ( italic_Ξ² ) = italic_M ( italic_Ξ² , italic_D ) is not proper.

Let f>1𝑓1f>1italic_f > 1 be the greatest common divisor of D/β𝐷𝛽D/\betaitalic_D / italic_Ξ² and β𝛽\betaitalic_Ξ². Let us consider the integers

Ξ²β€²=Ξ²f,Dβ€²=Df2=β′⁒D/Ξ²f.formulae-sequencesuperscript𝛽′𝛽𝑓superscript𝐷′𝐷superscript𝑓2superscript𝛽′𝐷𝛽𝑓\beta^{\prime}=\frac{\beta}{f},\quad D^{\prime}=\frac{D}{f^{2}}=\beta^{\prime}%\frac{D/\beta}{f}.italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = divide start_ARG italic_Ξ² end_ARG start_ARG italic_f end_ARG , italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = divide start_ARG italic_D end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG = italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT divide start_ARG italic_D / italic_Ξ² end_ARG start_ARG italic_f end_ARG .

Then Ξ²β€²superscript𝛽′\beta^{\prime}italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is obviously an odd integer that divides Dβ€²superscript𝐷′D^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT. Let us stress that it follows from the very definition of f𝑓fitalic_f thatΞ²β€²superscript𝛽′\beta^{\prime}italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT and Dβ€²/Ξ²β€²superscript𝐷′superscript𝛽′D^{\prime}/\beta^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT / italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are relatively prime.In addition, D/f∈K𝐷𝑓𝐾\sqrt{D}/f\in Ksquare-root start_ARG italic_D end_ARG / italic_f ∈ italic_K is obviously a square root of Dβ€²superscript𝐷′D^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT. On the other hand, f𝑓fitalic_f is obviously odd, hence its square f2superscript𝑓2f^{2}italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is congruent to 1111 modulo 4444. Since D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1\ (\bmod 4)italic_D ≑ 1 ( roman_mod 4 ), we conclude that Dβ€²superscript𝐷′D^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT is also congruent to 1111 modulo 4444. Now let us consider the order

Oβ€²:=ODβ€²=β„€+℀⁒1+Dβ€²2assignsuperscript𝑂′subscript𝑂superscript𝐷′℀℀1superscript𝐷′2O^{\prime}:=O_{D^{\prime}}={\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D^{\prime}%}}{2}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT := italic_O start_POSTSUBSCRIPT italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 2 end_ARG

of discriminant Dβ€²superscript𝐷′D^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT in K𝐾Kitalic_K,its element

wΞ²β€²β€²:=wΞ²β€²,Dβ€²=Ξ²β€²+Dβ€²2∈K,assignsubscriptsuperscript𝑀′superscript𝛽′subscript𝑀superscript𝛽′superscript𝐷′superscript𝛽′superscript𝐷′2𝐾w^{\prime}_{\beta^{\prime}}:=w_{\beta^{\prime},D^{\prime}}=\frac{\beta^{\prime%}+\sqrt{D^{\prime}}}{2}\in K,italic_w start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT := italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + square-root start_ARG italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_K ,

and the subgroup

M′⁒(Ξ²β€²):=M⁒(Ξ²β€²,Dβ€²)=[wΞ²β€²β€²,1]=℀⁒β′+Dβ€²2+β„€βŠ‚K.assignsuperscript𝑀′superscript𝛽′𝑀superscript𝛽′superscript𝐷′subscriptsuperscript𝑀′superscript𝛽′1β„€superscript𝛽′superscript𝐷′2℀𝐾M^{\prime}(\beta^{\prime}):=M(\beta^{\prime},D^{\prime})=[w^{\prime}_{\beta^{%\prime}},1]={\mathbb{Z}}\ \frac{\beta^{\prime}+\sqrt{D^{\prime}}}{2}+{\mathbb{%Z}}\subset K.italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) := italic_M ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = [ italic_w start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT , 1 ] = blackboard_Z divide start_ARG italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT + square-root start_ARG italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 2 end_ARG + blackboard_Z βŠ‚ italic_K .

We have

Dβ€²=Df2<D,superscript𝐷′𝐷superscript𝑓2𝐷D^{\prime}=\frac{D}{f^{2}}<D,italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = divide start_ARG italic_D end_ARG start_ARG italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG < italic_D ,

It follows that

Oβ‰ Oβ€²,𝑂superscript𝑂′O\neq O^{\prime},italic_O β‰  italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ,

because the orders O𝑂Oitalic_O and Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT have distinct discriminants. On the other hand,

wΞ²β€²β€²=Ξ²/f+D/f22=1f⁒β+D2=1f⁒wΞ²,D=1f⁒wΞ²subscriptsuperscript𝑀′superscript𝛽′𝛽𝑓𝐷superscript𝑓221𝑓𝛽𝐷21𝑓subscript𝑀𝛽𝐷1𝑓subscript𝑀𝛽w^{\prime}_{\beta^{\prime}}=\frac{\beta/f+\sqrt{D/f^{2}}}{2}=\frac{1}{f}\frac{%\beta+\sqrt{D}}{2}=\frac{1}{f}w_{\beta,D}=\frac{1}{f}w_{\beta}italic_w start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² / italic_f + square-root start_ARG italic_D / italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_w start_POSTSUBSCRIPT italic_Ξ² , italic_D end_POSTSUBSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT

and therefore

M′⁒(Ξ²β€²)=[1f⁒wΞ²,D,1f⁒β]=1f⁒[wΞ²,D,Ξ²]=1f⁒M⁒(Ξ²,D)=1f⁒M⁒(Ξ²).superscript𝑀′superscript𝛽′1𝑓subscript𝑀𝛽𝐷1𝑓𝛽1𝑓subscript𝑀𝛽𝐷𝛽1𝑓𝑀𝛽𝐷1𝑓𝑀𝛽M^{\prime}(\beta^{\prime})=\left[\frac{1}{f}w_{\beta,D},\frac{1}{f}\beta\right%]=\frac{1}{f}[w_{\beta,D},\beta]=\frac{1}{f}M(\beta,D)=\frac{1}{f}M(\beta).italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = [ divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_w start_POSTSUBSCRIPT italic_Ξ² , italic_D end_POSTSUBSCRIPT , divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_Ξ² ] = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG [ italic_w start_POSTSUBSCRIPT italic_Ξ² , italic_D end_POSTSUBSCRIPT , italic_Ξ² ] = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_M ( italic_Ξ² , italic_D ) = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_M ( italic_Ξ² ) .(45)

Now we are ready to apply to Dβ€²superscript𝐷′D^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT, Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT, and M′⁒(Ξ²β€²)superscript𝑀′superscript𝛽′M^{\prime}(\beta^{\prime})italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) (instead of D𝐷Ditalic_D, O𝑂Oitalic_O, and M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ))all the already proven results of this section (including Case 1 of the proof of (ii)), taking into account that the odd integers Ξ²β€²superscript𝛽′\beta^{\prime}italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT and Dβ€²/Ξ²β€²superscript𝐷′superscript𝛽′D^{\prime}/\beta^{\prime}italic_D start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT / italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT are relatively prime.We get that:

  1. (a)

    M′⁒(Ξ²β€²)superscript𝑀′superscript𝛽′M^{\prime}(\beta^{\prime})italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) is an ideal in the ring Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT;

  2. (b)

    M′⁒(Ξ²β€²)⁒M′⁒(Ξ²β€²)=β′⁒Oβ€²superscript𝑀′superscript𝛽′superscript𝑀′superscript𝛽′superscript𝛽′superscript𝑂′M^{\prime}(\beta^{\prime})M^{\prime}(\beta^{\prime})=\beta^{\prime}O^{\prime}italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT;

  3. (c)

    M′⁒(Ξ²β€²)superscript𝑀′superscript𝛽′M^{\prime}(\beta^{\prime})italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) is a projective Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT-module of rank 1that is a proper ideal of Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT - the latter means that

    Oβ€²={u∈K∣u⁒M′⁒(Ξ²β€²)βŠ‚M′⁒(Ξ²)}βŠ‚K.superscript𝑂′conditional-set𝑒𝐾𝑒superscript𝑀′superscript𝛽′superscript𝑀′𝛽𝐾O^{\prime}=\{u\in K\mid uM^{\prime}(\beta^{\prime})\subset M^{\prime}(\beta)\}%\subset K.italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = { italic_u ∈ italic_K ∣ italic_u italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) βŠ‚ italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² ) } βŠ‚ italic_K .(46)

On the other hand, in light of (45), M′⁒(Ξ²β€²)=1f⁒M⁒(Ξ²)superscript𝑀′superscript𝛽′1𝑓𝑀𝛽M^{\prime}(\beta^{\prime})=\frac{1}{f}M(\beta)italic_M start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ( italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = divide start_ARG 1 end_ARG start_ARG italic_f end_ARG italic_M ( italic_Ξ² ).Combining it with (b) and (46), we conclude thatM⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is an ideal in Oβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT, and

M⁒(Ξ²)⁒M⁒(Ξ²)=f2⁒β′⁒Oβ€²=f⁒β⁒Oβ€²,𝑀𝛽𝑀𝛽superscript𝑓2superscript𝛽′superscript𝑂′𝑓𝛽superscript𝑂′M(\beta)M(\beta)=f^{2}\beta^{\prime}O^{\prime}=f\beta O^{\prime},italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) = italic_f start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT italic_Ξ² start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = italic_f italic_Ξ² italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ,(47)
Oβ€²={u∈K∣u⁒M⁒(Ξ²)βŠ‚M⁒(Ξ²)}.superscript𝑂′conditional-set𝑒𝐾𝑒𝑀𝛽𝑀𝛽O^{\prime}=\{u\in K\mid uM(\beta)\subset M(\beta)\}.italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = { italic_u ∈ italic_K ∣ italic_u italic_M ( italic_Ξ² ) βŠ‚ italic_M ( italic_Ξ² ) } .

Since Oβ€²β‰ Osuperscript𝑂′𝑂O^{\prime}\neq Oitalic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  italic_O, the ideal M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) of O𝑂Oitalic_O is not proper.(Notice that (47) implies that M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a proper ideal inOβ€²superscript𝑂′O^{\prime}italic_O start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT.)

This ends the proof of (ii).

(iii) In light of Proposition 7.2(iii), Ξ²1⁒β2subscript𝛽1subscript𝛽2\beta_{1}\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is a saturated divisor of D𝐷Ditalic_D. Let us put

Ξ³=DΞ²1⁒β2βˆˆβ„€.𝛾𝐷subscript𝛽1subscript𝛽2β„€\gamma=\frac{D}{\beta_{1}\beta_{2}}\in{\mathbb{Z}}.italic_Ξ³ = divide start_ARG italic_D end_ARG start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG ∈ blackboard_Z .

Then γ𝛾\gammaitalic_Ξ³ and Ξ²1⁒β2subscript𝛽1subscript𝛽2\beta_{1}\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are relatively prime and

D=Ξ²1⁒β2⁒γ.𝐷subscript𝛽1subscript𝛽2𝛾D=\beta_{1}\beta_{2}\gamma.italic_D = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_Ξ³ .

We have

M⁒(Ξ²1)⁒M⁒(Ξ²2)=[Ξ²1,wΞ²1]⁒[Ξ²2,wΞ²2]=[Ξ²1⁒β2,b1⁒wΞ²2,b2⁒wΞ²1,wΞ²1⁒wΞ²2];𝑀subscript𝛽1𝑀subscript𝛽2subscript𝛽1subscript𝑀subscript𝛽1subscript𝛽2subscript𝑀subscript𝛽2subscript𝛽1subscript𝛽2subscript𝑏1subscript𝑀subscript𝛽2subscript𝑏2subscript𝑀subscript𝛽1subscript𝑀subscript𝛽1subscript𝑀subscript𝛽2M(\beta_{1})M(\beta_{2})=[\beta_{1},w_{\beta_{1}}][\beta_{2},w_{\beta_{2}}]=[%\beta_{1}\beta_{2},b_{1}w_{\beta_{2}},b_{2}w_{\beta_{1}},w_{\beta_{1}}w_{\beta%_{2}}];italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = [ italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ] [ italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ] = [ italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_b start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ] ;

in particular,

Ξ²1⁒β2∈M⁒(Ξ²1)⁒M⁒(Ξ²2).subscript𝛽1subscript𝛽2𝑀subscript𝛽1𝑀subscript𝛽2\beta_{1}\beta_{2}\in M(\beta_{1})M(\beta_{2}).italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

In addition, in light of Lemma 7.5,

M(Ξ²1)MΞ²2)βˆ‹Ξ²1wΞ²2=Ξ²1⁒β2+Ξ²1⁒D2,Ξ²2wΞ²1=Ξ²1⁒β2+Ξ²2⁒D2.M(\beta_{1})M\beta_{2})\ni\beta_{1}w_{\beta_{2}}=\frac{\beta_{1}\beta_{2}+%\beta_{1}\sqrt{D}}{2},\ \beta_{2}w_{\beta_{1}}=\frac{\beta_{1}\beta_{2}+\beta_%{2}\sqrt{D}}{2}.italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βˆ‹ italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG .

Since

M⁒(Ξ²1)=M⁒(βˆ’Ξ²1),M⁒(Ξ²2)=M⁒(βˆ’Ξ²2),formulae-sequence𝑀subscript𝛽1𝑀subscript𝛽1𝑀subscript𝛽2𝑀subscript𝛽2M(\beta_{1})=M(-\beta_{1}),\quad M(\beta_{2})=M(-\beta_{2}),italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = italic_M ( - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) , italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_M ( - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ,

M(Ξ²1)MΞ²2)=M(βˆ’Ξ²1)M(βˆ’Ξ²2)M(\beta_{1})M\beta_{2})=M(-\beta_{1})M(-\beta_{2})italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_M ( - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) contains both

(βˆ’Ξ²1)⁒(βˆ’Ξ²2)βˆ’Ξ²1⁒D2=Ξ²1⁒β2βˆ’Ξ²1⁒D2,(βˆ’Ξ²1)⁒(βˆ’Ξ²2)βˆ’Ξ²2⁒D2=Ξ²1⁒β2βˆ’Ξ²2⁒D2.formulae-sequencesubscript𝛽1subscript𝛽2subscript𝛽1𝐷2subscript𝛽1subscript𝛽2subscript𝛽1𝐷2subscript𝛽1subscript𝛽2subscript𝛽2𝐷2subscript𝛽1subscript𝛽2subscript𝛽2𝐷2\frac{(-\beta_{1})(-\beta_{2})-\beta_{1}\sqrt{D}}{2}=\frac{\beta_{1}\beta_{2}-%\beta_{1}\sqrt{D}}{2},\quad\frac{(-\beta_{1})(-\beta_{2})-\beta_{2}\sqrt{D}}{2%}=\frac{\beta_{1}\beta_{2}-\beta_{2}\sqrt{D}}{2}.divide start_ARG ( - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , divide start_ARG ( - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) ( - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG .

Hence, M(Ξ²1)MΞ²2)M(\beta_{1})M\beta_{2})italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) contains both

Ξ²1⁒β2+Ξ²1⁒D2βˆ’Ξ²1⁒β2βˆ’Ξ²1⁒D2=Ξ²1⁒Dsubscript𝛽1subscript𝛽2subscript𝛽1𝐷2subscript𝛽1subscript𝛽2subscript𝛽1𝐷2subscript𝛽1𝐷\frac{\beta_{1}\beta_{2}+\beta_{1}\sqrt{D}}{2}-\frac{\beta_{1}\beta_{2}-\beta_%{1}\sqrt{D}}{2}=\beta_{1}\sqrt{D}divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG - divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG

and

Ξ²1⁒β2+Ξ²2⁒D2βˆ’Ξ²1⁒β2βˆ’Ξ²2⁒D2=Ξ²2⁒D.subscript𝛽1subscript𝛽2subscript𝛽2𝐷2subscript𝛽1subscript𝛽2subscript𝛽2𝐷2subscript𝛽2𝐷\frac{\beta_{1}\beta_{2}+\beta_{2}\sqrt{D}}{2}-\frac{\beta_{1}\beta_{2}-\beta_%{2}\sqrt{D}}{2}=\beta_{2}\sqrt{D}.divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG - divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT - italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG .

Since the integers Ξ²1subscript𝛽1\beta_{1}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ²2subscript𝛽2\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are relatively prime,

D∈M(β1)Mβ2).\sqrt{D}\in M(\beta_{1})M\beta_{2}).square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_β start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_β start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

Taking into account that 1=Ξ²1βˆ’2⁒mΞ²11subscript𝛽12subscriptπ‘šsubscript𝛽11=\beta_{1}-2m_{\beta_{1}}1 = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 2 italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT with mΞ²1βˆˆβ„€subscriptπ‘šsubscript𝛽1β„€m_{\beta_{1}}\in{\mathbb{Z}}italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ blackboard_Z, we obtain that M(Ξ²1)MΞ²2)M(\beta_{1})M\beta_{2})italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) contains

Ξ²1⁒β2+Ξ²1⁒D2βˆ’mΞ²1⁒D=Ξ²1⁒β2+(Ξ²1βˆ’2⁒mΞ²1)⁒D2=Ξ²1⁒β2+D2=wΞ²1⁒β2.subscript𝛽1subscript𝛽2subscript𝛽1𝐷2subscriptπ‘šsubscript𝛽1𝐷subscript𝛽1subscript𝛽2subscript𝛽12subscriptπ‘šsubscript𝛽1𝐷2subscript𝛽1subscript𝛽2𝐷2subscript𝑀subscript𝛽1subscript𝛽2\frac{\beta_{1}\beta_{2}+\beta_{1}\sqrt{D}}{2}-m_{\beta_{1}}\sqrt{D}=\frac{%\beta_{1}\beta_{2}+(\beta_{1}-2m_{\beta_{1}})\sqrt{D}}{2}=\frac{\beta_{1}\beta%_{2}+\sqrt{D}}{2}=w_{\beta_{1}\beta_{2}}.divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG - italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT - 2 italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

This implies that

M(Ξ²1)MΞ²2)βŠƒβ„€wΞ²1⁒β2+β„€(Ξ²1Ξ²2)=M(Ξ²1Ξ²2).M(\beta_{1})M\beta_{2})\supset{\mathbb{Z}}w_{\beta_{1}\beta_{2}}+{\mathbb{Z}}(%\beta_{1}\beta_{2})=M(\beta_{1}\beta_{2}).italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) βŠƒ blackboard_Z italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + blackboard_Z ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) = italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

On the other hand, recall (Example 7.3(v)) thatD∈M⁒(Ξ²1⁒β2)𝐷𝑀subscript𝛽1subscript𝛽2\sqrt{D}\in M(\beta_{1}\beta_{2})square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ).In light of Example 7.3(v), in order to prove the desired equality, it suffices to check thatwΞ²1⁒wΞ²2∈M⁒(Ξ²1⁒β2)subscript𝑀subscript𝛽1subscript𝑀subscript𝛽2𝑀subscript𝛽1subscript𝛽2w_{\beta_{1}}w_{\beta_{2}}\in M(\beta_{1}\beta_{2})italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). Let us do it.

Recall that D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1\ (\bmod 4)italic_D ≑ 1 ( roman_mod 4 ).By Lemma 7.5,

wΞ²1⁒wΞ²2=Ξ²1⁒β2⁒γ+12+Ξ²1+Ξ²22⁒D2.subscript𝑀subscript𝛽1subscript𝑀subscript𝛽2subscript𝛽1subscript𝛽2𝛾12subscript𝛽1subscript𝛽22𝐷2w_{\beta_{1}}w_{\beta_{2}}=\frac{\beta_{1}\beta_{2}\frac{\gamma+1}{2}+\frac{%\beta_{1}+\beta_{2}}{2}\sqrt{D}}{2}.italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG italic_Ξ³ + 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG .

Case 1 Suppose that γ≑1(mod4)𝛾annotated1moduloabsent4\gamma\equiv 1\ (\bmod 4)italic_Ξ³ ≑ 1 ( roman_mod 4 ). Then Ξ²1⁒β2≑1(mod4)subscript𝛽1subscript𝛽2annotated1moduloabsent4\beta_{1}\beta_{2}\equiv 1\ (\bmod 4)italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≑ 1 ( roman_mod 4 ).This means that Ξ²1≑β2mod4subscript𝛽1modulosubscript𝛽24\beta_{1}\equiv\beta_{2}\bmod 4italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ≑ italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_mod 4. It follows that

Ξ²1+Ξ²2≑2Ξ²1(mod4)4=2(2mΞ²1+1)(mod4)≑2(mod4).\beta_{1}+\beta_{2}\equiv 2\beta_{1}\ (\bmod 4)4=2(2m_{\beta_{1}}+1)\ (\bmod 4%)\equiv 2\ (\bmod 4).italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≑ 2 italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( roman_mod 4 ) 4 = 2 ( 2 italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + 1 ) ( roman_mod 4 ) ≑ 2 ( roman_mod 4 ) .

This implies that the integer (Ξ²1+Ξ²2)/2subscript𝛽1subscript𝛽22(\beta_{1}+\beta_{2})/2( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) / 2 is congruent to 1111 modulo 2222, i.e., is odd.On the other hand, Ξ³+1≑2(mod4)𝛾1annotated2moduloabsent4\gamma+1\equiv 2\ (\bmod 4)italic_Ξ³ + 1 ≑ 2 ( roman_mod 4 ), which implies that(Ξ³+1)/2𝛾12(\gamma+1)/2( italic_Ξ³ + 1 ) / 2 is an odd integer. It follows that there are integers n1subscript𝑛1n_{1}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that

Ξ³+12=2⁒n1+1,Ξ²1+Ξ²22=2⁒n2+1formulae-sequence𝛾122subscript𝑛11subscript𝛽1subscript𝛽222subscript𝑛21\frac{\gamma+1}{2}=2n_{1}+1,\quad\frac{\beta_{1}+\beta_{2}}{2}=2n_{2}+1divide start_ARG italic_Ξ³ + 1 end_ARG start_ARG 2 end_ARG = 2 italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 , divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG = 2 italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1

and therefore

wΞ²1⁒wΞ²2=(2⁒n1+1)⁒β1⁒β2+(2⁒n2+1)⁒D2=subscript𝑀subscript𝛽1subscript𝑀subscript𝛽22subscript𝑛11subscript𝛽1subscript𝛽22subscript𝑛21𝐷2absentw_{\beta_{1}}w_{\beta_{2}}=\frac{(2n_{1}+1)\beta_{1}\beta_{2}+(2n_{2}+1)\sqrt{%D}}{2}=italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG ( 2 italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + 1 ) italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + ( 2 italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + 1 ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG =
(n1⁒n2)⁒β1⁒β2+n2⁒D+wΞ²1⁒β2∈M⁒(Ξ²1⁒β2).subscript𝑛1subscript𝑛2subscript𝛽1subscript𝛽2subscript𝑛2𝐷subscript𝑀subscript𝛽1subscript𝛽2𝑀subscript𝛽1subscript𝛽2(n_{1}n_{2})\beta_{1}\beta_{2}+n_{2}\sqrt{D}+w_{\beta_{1}\beta_{2}}\in M(\beta%_{1}\beta_{2}).( italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG + italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) .

Since, Ξ²1⁒β2,D∈M⁒(Ξ²1⁒β2)subscript𝛽1subscript𝛽2𝐷𝑀subscript𝛽1subscript𝛽2\beta_{1}\beta_{2},\sqrt{D}\in M(\beta_{1}\beta_{2})italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), we conclude thatwΞ²1⁒wΞ²2∈M⁒(Ξ²1⁒β2)subscript𝑀subscript𝛽1subscript𝑀subscript𝛽2𝑀subscript𝛽1subscript𝛽2w_{\beta_{1}}w_{\beta_{2}}\in M(\beta_{1}\beta_{2})italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). So, we are done.

Case 2 Suppose that γ≑3(mod4)𝛾annotated3moduloabsent4\gamma\equiv 3\ (\bmod 4)italic_Ξ³ ≑ 3 ( roman_mod 4 ). Then Ξ²1⁒β2≑3(mod4)subscript𝛽1subscript𝛽2annotated3moduloabsent4\beta_{1}\beta_{2}\equiv 3\ (\bmod 4)italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ≑ 3 ( roman_mod 4 ). This means that Ξ²1β‰’Ξ²2mod4not-equivalent-tosubscript𝛽1modulosubscript𝛽24\beta_{1}\not\equiv\beta_{2}\bmod 4italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT β‰’ italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT roman_mod 4. It follows thatΞ²1+Ξ²2subscript𝛽1subscript𝛽2\beta_{1}+\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is divisible by 4444 (recall that both Ξ²1subscript𝛽1\beta_{1}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ²2subscript𝛽2\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are odd) and therefore the integer (Ξ²1+Ξ²2)/2subscript𝛽1subscript𝛽22(\beta_{1}+\beta_{2})/2( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) / 2 is even. It follows that there are integers n1subscript𝑛1n_{1}italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and n2subscript𝑛2n_{2}italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT such that

Ξ³+12=2⁒n1,Ξ²1+Ξ²22=2⁒n2.formulae-sequence𝛾122subscript𝑛1subscript𝛽1subscript𝛽222subscript𝑛2\frac{\gamma+1}{2}=2n_{1},\quad\frac{\beta_{1}+\beta_{2}}{2}=2n_{2}.divide start_ARG italic_Ξ³ + 1 end_ARG start_ARG 2 end_ARG = 2 italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG = 2 italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT .

Hence,

wΞ²1⁒wΞ²2=(2⁒n1)⁒β1⁒β2+(2⁒n2)⁒D2=subscript𝑀subscript𝛽1subscript𝑀subscript𝛽22subscript𝑛1subscript𝛽1subscript𝛽22subscript𝑛2𝐷2absentw_{\beta_{1}}w_{\beta_{2}}=\frac{(2n_{1})\beta_{1}\beta_{2}+(2n_{2})\sqrt{D}}{%2}=italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG ( 2 italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + ( 2 italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG =
n1⁒β1⁒β2+n2⁒D∈M⁒(Ξ²1)⁒M⁒(Ξ²2),subscript𝑛1subscript𝛽1subscript𝛽2subscript𝑛2𝐷𝑀subscript𝛽1𝑀subscript𝛽2n_{1}\beta_{1}\beta_{2}+n_{2}\sqrt{D}\in M(\beta_{1})M(\beta_{2}),italic_n start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_n start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) italic_M ( italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) ,

because Ξ²1⁒β2,D∈M⁒(Ξ²1⁒β2)subscript𝛽1subscript𝛽2𝐷𝑀subscript𝛽1subscript𝛽2\beta_{1}\beta_{2},\sqrt{D}\in M(\beta_{1}\beta_{2})italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , square-root start_ARG italic_D end_ARG ∈ italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ). This ends the proof.

(v) Applying (iv) to

Ξ²1=Ξ²,Ξ²2=D/Ξ²,Ξ³=1,formulae-sequencesubscript𝛽1𝛽formulae-sequencesubscript𝛽2𝐷𝛽𝛾1\beta_{1}=\beta,\ \beta_{2}=D/\beta,\ \gamma=1,italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_Ξ² , italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT = italic_D / italic_Ξ² , italic_Ξ³ = 1 ,

we get

M⁒(Ξ²)⁒M⁒(D/Ξ²)=M⁒(D).𝑀𝛽𝑀𝐷𝛽𝑀𝐷M(\beta)M(D/\beta)=M(D).italic_M ( italic_Ξ² ) italic_M ( italic_D / italic_Ξ² ) = italic_M ( italic_D ) .

ByExample 7.3, M⁒(D)=D⁒O𝑀𝐷𝐷𝑂M(D)=\sqrt{D}\ Oitalic_M ( italic_D ) = square-root start_ARG italic_D end_ARG italic_O. This implies that

D⁒O=M⁒(Ξ²)⁒M⁒(D/Ξ²).𝐷𝑂𝑀𝛽𝑀𝐷𝛽\sqrt{D}\ O=M(\beta)M(D/\beta).square-root start_ARG italic_D end_ARG italic_O = italic_M ( italic_Ξ² ) italic_M ( italic_D / italic_Ξ² ) .

Multiplying both sides by M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ), we get (in light of the already proven (40))

M⁒(Ξ²)⁒D⁒O=M⁒(Ξ²)⁒M⁒(Ξ²)⁒M⁒(D/Ξ²)=β⁒M⁒(D/Ξ²),𝑀𝛽𝐷𝑂𝑀𝛽𝑀𝛽𝑀𝐷𝛽𝛽𝑀𝐷𝛽M(\beta)\sqrt{D}\ O=M(\beta)M(\beta)M(D/\beta)=\beta\ M(D/\beta),italic_M ( italic_Ξ² ) square-root start_ARG italic_D end_ARG italic_O = italic_M ( italic_Ξ² ) italic_M ( italic_Ξ² ) italic_M ( italic_D / italic_Ξ² ) = italic_Ξ² italic_M ( italic_D / italic_Ξ² ) ,

which means that

D⁒M⁒(Ξ²)=β⁒M⁒(D/Ξ²),𝐷𝑀𝛽𝛽𝑀𝐷𝛽\sqrt{D}M(\beta)=\beta\ M(D/\beta),square-root start_ARG italic_D end_ARG italic_M ( italic_Ξ² ) = italic_Ξ² italic_M ( italic_D / italic_Ξ² ) ,

i.e.,

M⁒(D/Ξ²)=Dβ⁒M⁒(Ξ²).𝑀𝐷𝛽𝐷𝛽𝑀𝛽M(D/\beta)=\frac{\sqrt{D}}{\beta}M(\beta).italic_M ( italic_D / italic_Ξ² ) = divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG italic_Ξ² end_ARG italic_M ( italic_Ξ² ) .

∎

Corollary 7.6.
  • (i)

    Let β𝛽\betaitalic_Ξ² be a positive divisor of D𝐷Ditalic_D. Then M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a prime ideal in O𝑂Oitalic_O if and only if β𝛽\betaitalic_Ξ² is a prime.If this is the case then M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a maximal ideal in O𝑂Oitalic_O and the residue field O/M⁒(Ξ²)𝑂𝑀𝛽O/M(\beta)italic_O / italic_M ( italic_Ξ² )is the finite prime field 𝔽βsubscript𝔽𝛽\mathbb{F}_{\beta}blackboard_F start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT that consists of β𝛽\betaitalic_Ξ² elements.

  • (ii)

    Let PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT be the (finite nonempty) set of positive prime divisors of D𝐷Ditalic_D. Let S1subscript𝑆1S_{1}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and S2subscript𝑆2S_{2}italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be two subsets of PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPTand S0:=S1∩S2assignsubscript𝑆0subscript𝑆1subscript𝑆2S_{0}:=S_{1}\cap S_{2}italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT := italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ∩ italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. Then

    M⁒(𝐫D,S1)⁒M⁒(𝐫D,S2)=𝐫D,S0⁒M⁒(𝐫D,S1⁒Δ⁒S2).𝑀subscript𝐫𝐷subscript𝑆1𝑀subscript𝐫𝐷subscript𝑆2subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆1Ξ”subscript𝑆2M(\mathbf{r}_{D,S_{1}})M(\mathbf{r}_{D,S_{2}})=\mathbf{r}_{D,S_{0}}M(\mathbf{r%}_{D,S_{1}\Delta S_{2}}).italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .
Proof.

(i) Recall (33) that M⁒(Ξ²)βˆ©β„€=β⁒℀.𝑀𝛽℀𝛽℀M(\beta)\cap{\mathbb{Z}}=\beta{\mathbb{Z}}.italic_M ( italic_Ξ² ) ∩ blackboard_Z = italic_Ξ² blackboard_Z . If Ξ²=Ξ²1⁒β2𝛽subscript𝛽1subscript𝛽2\beta=\beta_{1}\beta_{2}italic_Ξ² = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT where Ξ²1,Ξ²2>1subscript𝛽1subscript𝛽21\beta_{1},\beta_{2}>1italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT > 1 are integersthen none of Ξ²1,Ξ²2subscript𝛽1subscript𝛽2\beta_{1},\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT lies in M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) while their product β𝛽\betaitalic_Ξ² lies in β„€β„€{\mathbb{Z}}blackboard_Z. So, M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is not a prime idealif β𝛽\betaitalic_Ξ² is not a prime number.

Suppose that β𝛽\betaitalic_Ξ² is a prime number. In light of (32), the quotient ring O/M⁒(Ξ²)𝑂𝑀𝛽O/M(\beta)italic_O / italic_M ( italic_Ξ² ) consists of β𝛽\betaitalic_Ξ² elements.Since β𝛽\betaitalic_Ξ² is prime, O/M⁒(Ξ²)𝑂𝑀𝛽O/M(\beta)italic_O / italic_M ( italic_Ξ² ) is the prime finite field 𝔽βsubscript𝔽𝛽\mathbb{F}_{\beta}blackboard_F start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT. Hence, M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a maximal idealin O𝑂Oitalic_O; hence it is a prime ideal in O𝑂Oitalic_O.

(ii) In light of Proposition 7.2 applied to n=D𝑛𝐷n=Ditalic_n = italic_D, the positive integer𝐫D,S0subscript𝐫𝐷subscript𝑆0\mathbf{r}_{D,S_{0}}bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT is the GCD of 𝐫D,S1subscript𝐫𝐷subscript𝑆1\mathbf{r}_{D,S_{1}}bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝐫D,S2subscript𝐫𝐷subscript𝑆2\mathbf{r}_{D,S_{2}}bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. In addition,if we put S10=S1βˆ–S0,S20=S2βˆ–S0formulae-sequencesubscript𝑆10subscript𝑆1subscript𝑆0subscript𝑆20subscript𝑆2subscript𝑆0S_{10}=S_{1}\setminus S_{0},\ S_{20}=S_{2}\setminus S_{0}italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT = italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ– italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT then S1⁒Δ⁒S2subscript𝑆1Ξ”subscript𝑆2S_{1}\Delta S_{2}italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT coincides with the disjoint union of S10subscript𝑆10S_{10}italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT and S20subscript𝑆20S_{20}italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT,every pair of integers from𝐫D,S0,𝐫D,S10,𝐫D,S20subscript𝐫𝐷subscript𝑆0subscript𝐫𝐷subscript𝑆10subscript𝐫𝐷subscript𝑆20\mathbf{r}_{D,S_{0}},\mathbf{r}_{D,S_{10}},\mathbf{r}_{D,S_{20}}bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPTis mutually prime and

𝐫D,S1=𝐫D,S0,𝐫D,S10,𝐫D,S2=𝐫D,S0,𝐫D,S20.formulae-sequencesubscript𝐫𝐷subscript𝑆1subscript𝐫𝐷subscript𝑆0subscript𝐫𝐷subscript𝑆10subscript𝐫𝐷subscript𝑆2subscript𝐫𝐷subscript𝑆0subscript𝐫𝐷subscript𝑆20\mathbf{r}_{D,S_{1}}=\mathbf{r}_{D,S_{0}},\mathbf{r}_{D,S_{10}},\quad\mathbf{r%}_{D,S_{2}}=\mathbf{r}_{D,S_{0}},\mathbf{r}_{D,S_{20}}.bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .

In light of Theorem 7.4(ii, iii),

M⁒(𝐫D,S1)⁒M⁒(𝐫D,S2)=(M⁒(𝐫D,S10)⁒M⁒(𝐫D,S0))⁒(M⁒(𝐫D,S0)⁒M⁒(𝐫D,S20))=𝑀subscript𝐫𝐷subscript𝑆1𝑀subscript𝐫𝐷subscript𝑆2𝑀subscript𝐫𝐷subscript𝑆10𝑀subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆20absentM(\mathbf{r}_{D,S_{1}})M(\mathbf{r}_{D,S_{2}})=\left(M(\mathbf{r}_{D,S_{10}})M%(\mathbf{r}_{D,S_{0}})\right)\left(M(\mathbf{r}_{D,S_{0}})M(\mathbf{r}_{D,S_{2%0}})\right)=italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = ( italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ) ( italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ) =
M⁒(𝐫D,S10)⁒(M⁒(𝐫D,S0)⁒M⁒(𝐫D,S0))⁒M⁒(𝐫D,S20)=𝑀subscript𝐫𝐷subscript𝑆10𝑀subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆20absentM(\mathbf{r}_{D,S_{10}})\ \left(M(\mathbf{r}_{D,S_{0}})M(\mathbf{r}_{D,S_{0}})%\right)\ M(\mathbf{r}_{D,S_{20}})=italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ( italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) =
M⁒(𝐫D,S10)⁒(𝐫D,S0⁒O)⁒M⁒(𝐫D,S20)=𝑀subscript𝐫𝐷subscript𝑆10subscript𝐫𝐷subscript𝑆0𝑂𝑀subscript𝐫𝐷subscript𝑆20absentM(\mathbf{r}_{D,S_{10}})\ \left(\mathbf{r}_{D,S_{0}}O\right)\ M(\mathbf{r}_{D,%S_{20}})=italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_O ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) =
𝐫D,S0⁒M⁒(𝐫D,S10)⁒M⁒(𝐫D,S20)=𝐫D,S0⁒M⁒(𝐫D,S1⁒Δ⁒S2).subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆10𝑀subscript𝐫𝐷subscript𝑆20subscript𝐫𝐷subscript𝑆0𝑀subscript𝐫𝐷subscript𝑆1Ξ”subscript𝑆2\mathbf{r}_{D,S_{0}}M(\mathbf{r}_{D,S_{10}})M(\mathbf{r}_{D,S_{20}})=\mathbf{r%}_{D,S_{0}}M(\mathbf{r}_{D,S_{1}\Delta S_{2}}).bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 10 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 20 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT roman_Ξ” italic_S start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) .

This ends the proof.∎

Proof of Lemma 7.5.

(i) We have

wβ⁒wβˆ’Ξ²=Ξ²+D2β’βˆ’Ξ²+D2=βˆ’Ξ²+D2β’Ξ²βˆ’D2=subscript𝑀𝛽subscript𝑀𝛽𝛽𝐷2𝛽𝐷2𝛽𝐷2𝛽𝐷2absentw_{\beta}w_{-\beta}=\frac{\beta+\sqrt{D}}{2}\frac{-\beta+\sqrt{D}}{2}=-\frac{%\beta+\sqrt{D}}{2}\frac{\beta-\sqrt{D}}{2}=italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT - italic_Ξ² end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG divide start_ARG - italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = - divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG divide start_ARG italic_Ξ² - square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG =
βˆ’Ξ²2βˆ’D4=Dβˆ’Ξ²24.superscript𝛽2𝐷4𝐷superscript𝛽24-\frac{\beta^{2}-D}{4}=\frac{D-\beta^{2}}{4}.- divide start_ARG italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_D end_ARG start_ARG 4 end_ARG = divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

Since β𝛽\betaitalic_Ξ² is odd, Ξ²2≑1(mod4)superscript𝛽2annotated1moduloabsent4\beta^{2}\equiv 1\ (\bmod 4)italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ≑ 1 ( roman_mod 4 ). Since D≑1(mod4)𝐷annotated1moduloabsent4D\equiv 1\ (\bmod 4)italic_D ≑ 1 ( roman_mod 4 ), the difference Dβˆ’Ξ²2𝐷superscript𝛽2D-\beta^{2}italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT is divisible by 4444, i.e., (Dβˆ’Ξ²2)/4𝐷superscript𝛽24(D-\beta^{2})/4( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 is an integer.

(ii)

wΞ²+σ⁒(wΞ²)=Ξ²+D2+Ξ²βˆ’D2=Ξ²,wβ⁒σ⁒(wΞ²)=Ξ²+D2β’Ξ²βˆ’D2=Ξ²2βˆ’D4.formulae-sequencesubscriptπ‘€π›½πœŽsubscript𝑀𝛽𝛽𝐷2𝛽𝐷2𝛽subscriptπ‘€π›½πœŽsubscript𝑀𝛽𝛽𝐷2𝛽𝐷2superscript𝛽2𝐷4w_{\beta}+\sigma(w_{\beta})=\frac{\beta+\sqrt{D}}{2}+\frac{\beta-\sqrt{D}}{2}=%\beta,\quad w_{\beta}\sigma(w_{\beta})=\frac{\beta+\sqrt{D}}{2}\frac{\beta-%\sqrt{D}}{2}=\frac{\beta^{2}-D}{4}.italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + italic_Οƒ ( italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² - square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_Ξ² , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT italic_Οƒ ( italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG divide start_ARG italic_Ξ² - square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_D end_ARG start_ARG 4 end_ARG .

By Vieta’s formulas,

wΞ²2βˆ’Ξ²β’wΞ²+Ξ²2βˆ’D4=0,i.e.,wΞ²2=β⁒wΞ²+Dβˆ’Ξ²24.formulae-sequencesuperscriptsubscript𝑀𝛽2𝛽subscript𝑀𝛽superscript𝛽2𝐷40i.e.superscriptsubscript𝑀𝛽2𝛽subscript𝑀𝛽𝐷superscript𝛽24w_{\beta}^{2}-\beta w_{\beta}+\frac{\beta^{2}-D}{4}=0,\ \text{i.e.},\ w_{\beta%}^{2}=\beta w_{\beta}+\frac{D-\beta^{2}}{4}.italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_D end_ARG start_ARG 4 end_ARG = 0 , i.e. , italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

(iii) Recall that w1=wΞ²βˆ’mΞ²subscript𝑀1subscript𝑀𝛽subscriptπ‘šπ›½w_{1}=w_{\beta}-m_{\beta}italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_m start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT. In light of already proven (i),

w1⁒wΞ²=(wΞ²βˆ’m⁒(Ξ²))⁒wΞ²=wΞ²2βˆ’m⁒(Ξ²)⁒wΞ²=subscript𝑀1subscript𝑀𝛽subscriptπ‘€π›½π‘šπ›½subscript𝑀𝛽superscriptsubscript𝑀𝛽2π‘šπ›½subscript𝑀𝛽absentw_{1}w_{\beta}=(w_{\beta}-m(\beta))w_{\beta}=w_{\beta}^{2}-m(\beta)w_{\beta}=italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = ( italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT - italic_m ( italic_Ξ² ) ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT - italic_m ( italic_Ξ² ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT =
β⁒wΞ²+Dβˆ’Ξ²24βˆ’m⁒(Ξ²)⁒wΞ²=(Ξ²βˆ’m⁒(Ξ²))⁒wΞ²+Dβˆ’Ξ²24.𝛽subscript𝑀𝛽𝐷superscript𝛽24π‘šπ›½subscriptπ‘€π›½π›½π‘šπ›½subscript𝑀𝛽𝐷superscript𝛽24\beta w_{\beta}+\frac{D-\beta^{2}}{4}-m(\beta)w_{\beta}=(\beta-m(\beta))w_{%\beta}+\frac{D-\beta^{2}}{4}.italic_Ξ² italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG - italic_m ( italic_Ξ² ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT = ( italic_Ξ² - italic_m ( italic_Ξ² ) ) italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT + divide start_ARG italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT end_ARG start_ARG 4 end_ARG .

This proves the first assertion, of (ii). On the other hand, since wβ∈M⁒(Ξ²)subscript𝑀𝛽𝑀𝛽w_{\beta}\in M(\beta)italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ∈ italic_M ( italic_Ξ² ), the product w1⁒wΞ²subscript𝑀1subscript𝑀𝛽w_{1}w_{\beta}italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT lies in M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) if and only if (Dβˆ’Ξ²2)/4∈M⁒(Ξ²)𝐷superscript𝛽24𝑀𝛽(D-\beta^{2})/4\in M(\beta)( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4 ∈ italic_M ( italic_Ξ² ).In light of (33), this is equivalent to the divisibility of (Dβˆ’Ξ²2)/4𝐷superscript𝛽24(D-\beta^{2})/4( italic_D - italic_Ξ² start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT ) / 4, which ends the proof.

(iv)

Ξ²1⁒wΞ²2=Ξ²1⁒β2+D2=Ξ²1⁒β2+Ξ²1⁒D2=subscript𝛽1subscript𝑀subscript𝛽2subscript𝛽1subscript𝛽2𝐷2subscript𝛽1subscript𝛽2subscript𝛽1𝐷2absent\beta_{1}w_{\beta_{2}}=\beta_{1}\frac{\beta_{2}+\sqrt{D}}{2}=\frac{\beta_{1}%\beta_{2}+\beta_{1}\sqrt{D}}{2}=italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG =
Ξ²1⁒β2+(1+2⁒mΞ²1)⁒D2=Ξ²1⁒β2+D2=wΞ²1⁒β2+mΞ²1⁒D.subscript𝛽1subscript𝛽212subscriptπ‘šsubscript𝛽1𝐷2subscript𝛽1subscript𝛽2𝐷2subscript𝑀subscript𝛽1subscript𝛽2subscriptπ‘šsubscript𝛽1𝐷\frac{\beta_{1}\beta_{2}+(1+2m_{\beta_{1}})\sqrt{D}}{2}=\frac{\beta_{1}\beta_{%2}+\sqrt{D}}{2}=w_{\beta_{1}\beta_{2}}+m_{\beta_{1}}\sqrt{D}.divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + ( 1 + 2 italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG .

So,

Ξ²1⁒wΞ²2=wΞ²1⁒β2+mΞ²1⁒D.subscript𝛽1subscript𝑀subscript𝛽2subscript𝑀subscript𝛽1subscript𝛽2subscriptπ‘šsubscript𝛽1𝐷\beta_{1}w_{\beta_{2}}=w_{\beta_{1}\beta_{2}}+m_{\beta_{1}}\sqrt{D}.italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT + italic_m start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT square-root start_ARG italic_D end_ARG .

Since bothwΞ²1⁒β2subscript𝑀subscript𝛽1subscript𝛽2w_{\beta_{1}\beta_{2}}italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT and D𝐷\sqrt{D}square-root start_ARG italic_D end_ARG lie in M⁒(Ξ²1⁒β2)𝑀subscript𝛽1subscript𝛽2M(\beta_{1}\beta_{2})italic_M ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ), the same is true for Ξ²1⁒wΞ²2subscript𝛽1subscript𝑀subscript𝛽2\beta_{1}w_{\beta_{2}}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT. This proves the first formula from (iv).Interchanging Ξ²1subscript𝛽1\beta_{1}italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and Ξ²2subscript𝛽2\beta_{2}italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, we get the second formula from (iv).

(v)

wΞ²1⁒wΞ²2=Ξ²1+D2β‹…Ξ²2+D2=(Ξ²1⁒β2+D)+(Ξ²1+Ξ²2)⁒D4=subscript𝑀subscript𝛽1subscript𝑀subscript𝛽2β‹…subscript𝛽1𝐷2subscript𝛽2𝐷2subscript𝛽1subscript𝛽2𝐷subscript𝛽1subscript𝛽2𝐷4absentw_{\beta_{1}}w_{\beta_{2}}=\frac{\beta_{1}+\sqrt{D}}{2}\cdot\frac{\beta_{2}+%\sqrt{D}}{2}=\frac{(\beta_{1}\beta_{2}+D)+(\beta_{1}+\beta_{2})\sqrt{D}}{4}=italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG β‹… divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = divide start_ARG ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_D ) + ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 4 end_ARG =
(Ξ²1⁒β2+Ξ²1⁒β2⁒γ)+(Ξ²1+Ξ²2)⁒D4=subscript𝛽1subscript𝛽2subscript𝛽1subscript𝛽2𝛾subscript𝛽1subscript𝛽2𝐷4absent\frac{(\beta_{1}\beta_{2}+\beta_{1}\beta_{2}\gamma)+(\beta_{1}+\beta_{2})\sqrt%{D}}{4}=divide start_ARG ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT italic_Ξ³ ) + ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 4 end_ARG =
Ξ²1⁒β2⁒(Ξ³+1)+(Ξ²1+Ξ²2)⁒D4=Ξ²1⁒β2⁒γ+12+Ξ²1+Ξ²22⁒D2.subscript𝛽1subscript𝛽2𝛾1subscript𝛽1subscript𝛽2𝐷4subscript𝛽1subscript𝛽2𝛾12subscript𝛽1subscript𝛽22𝐷2\frac{\beta_{1}\beta_{2}(\gamma+1)+(\beta_{1}+\beta_{2})\sqrt{D}}{4}=\frac{%\beta_{1}\beta_{2}\frac{\gamma+1}{2}+\frac{\beta_{1}+\beta_{2}}{2}\sqrt{D}}{2}.divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ( italic_Ξ³ + 1 ) + ( italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) square-root start_ARG italic_D end_ARG end_ARG start_ARG 4 end_ARG = divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT divide start_ARG italic_Ξ³ + 1 end_ARG start_ARG 2 end_ARG + divide start_ARG italic_Ξ² start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT + italic_Ξ² start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG start_ARG 2 end_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG .

∎

Now and till the end of this section we assume that D<0𝐷0D<0italic_D < 0, i.e., =β„šβ’(D)⁒Kabsentβ„šπ·πΎ={\mathbb{Q}}(\sqrt{D})K= blackboard_Q ( square-root start_ARG italic_D end_ARG ) italic_K is an imaginary quadratic field.We will view K𝐾Kitalic_K as the subfield β„š+β„šβ’Dβ„šβ„šπ·{\mathbb{Q}}+{\mathbb{Q}}\ \sqrt{D}blackboard_Q + blackboard_Q square-root start_ARG italic_D end_ARG of β„‚β„‚{\mathbb{C}}blackboard_C such that

Dβˆˆβ„ŒβŠ‚β„‚.π·β„Œβ„‚\sqrt{D}\in\mathfrak{H}\subset{\mathbb{C}}.square-root start_ARG italic_D end_ARG ∈ fraktur_H βŠ‚ blackboard_C .

Then the nontrivial automorphism Οƒ:Kβ†’K:πœŽβ†’πΎπΎ\sigma:K\to Kitalic_Οƒ : italic_K β†’ italic_K coincides with the restriction of the complex conjugation to K𝐾Kitalic_K. This implies(in light of (26)) that

Kβˆ©β„=KΟƒ=β„š.𝐾ℝsuperscriptπΎπœŽβ„šK\cap{\mathbb{R}}=K^{\sigma}={\mathbb{Q}}.italic_K ∩ blackboard_R = italic_K start_POSTSUPERSCRIPT italic_Οƒ end_POSTSUPERSCRIPT = blackboard_Q .(48)

Recall [2, Ch. 2] that a full module in K𝐾Kitalic_K is a subgroup M𝑀Mitalic_M of K𝐾Kitalic_K that is a free abelian (sub)group of rank 2222;the multiplier ring 𝐎⁒(M)πŽπ‘€\mathbf{O}(M)bold_O ( italic_M ) of M𝑀Mitalic_M is defined as

{u∈K∣u⁒(M)βŠ‚M}βŠ‚K.conditional-set𝑒𝐾𝑒𝑀𝑀𝐾\{u\in K\mid u(M)\subset M\}\subset K.{ italic_u ∈ italic_K ∣ italic_u ( italic_M ) βŠ‚ italic_M } βŠ‚ italic_K .

It is well known that 𝐎⁒(M)πŽπ‘€\mathbf{O}(M)bold_O ( italic_M ) is an order in K𝐾Kitalic_K.

On the other hand, if O𝑂Oitalic_O is an order in K𝐾Kitalic_K then it is said that a full module M𝑀Mitalic_M belongs to O𝑂Oitalic_O if𝐎⁒(M)=OπŽπ‘€π‘‚\mathbf{O}(M)=Obold_O ( italic_M ) = italic_O. Such a module M𝑀Mitalic_M is also often called a (fractional) proper O𝑂Oitalic_O-ideal.For example, u⁒O𝑒𝑂uOitalic_u italic_O is a proper O𝑂Oitalic_O-ideal for all u∈Kβˆ—π‘’superscript𝐾u\in K^{*}italic_u ∈ italic_K start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT; such an ideal is called principal.Obviously, if M𝑀Mitalic_M is a proper O𝑂Oitalic_O-ideal then u⁒M𝑒𝑀uMitalic_u italic_M is also one for all u∈Kβˆ—π‘’superscript𝐾u\in K^{*}italic_u ∈ italic_K start_POSTSUPERSCRIPT βˆ— end_POSTSUPERSCRIPT. The proper O𝑂Oitalic_O-ideals M𝑀Mitalic_M and u⁒M𝑒𝑀uMitalic_u italic_Mare called similar. Recall that σ⁒(O)=OπœŽπ‘‚π‘‚\sigma(O)=Oitalic_Οƒ ( italic_O ) = italic_O. It follows that σ⁒(M)πœŽπ‘€\sigma(M)italic_Οƒ ( italic_M ) is also a proper O𝑂Oitalic_O-ideal. There is a nonzero rational number𝐍⁒(M)𝐍𝑀\mathbf{N}(M)bold_N ( italic_M ) that is called the norm of M𝑀Mitalic_M such that

M⁒σ⁒(M)=𝐍⁒(M)⁒Oπ‘€πœŽπ‘€ππ‘€π‘‚M\ \sigma(M)=\mathbf{N}(M)\ Oitalic_M italic_Οƒ ( italic_M ) = bold_N ( italic_M ) italic_O(49)

[2, Ch. 2, Sect. 7.4]. It follows that

M⁒(1𝐍⁒(M)⁒σ⁒(M))=O,𝑀1ππ‘€πœŽπ‘€π‘‚M\ \left(\frac{1}{\mathbf{N}(M)}\sigma(M)\right)=O,italic_M ( divide start_ARG 1 end_ARG start_ARG bold_N ( italic_M ) end_ARG italic_Οƒ ( italic_M ) ) = italic_O ,

which implies that M𝑀Mitalic_M is an invertible O𝑂Oitalic_O-submodule of the field K𝐾Kitalic_K. By [3, Ch. 2, Sect. 5, n 6, Th. 4],M𝑀Mitalic_M is a projective O𝑂Oitalic_O-module of rank 1111.

If M1,M2subscript𝑀1subscript𝑀2M_{1},M_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are two proper O𝑂Oitalic_O-ideals then M1⁒M2subscript𝑀1subscript𝑀2M_{1}M_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT is also a proper O𝑂Oitalic_O-ideal and the binary operation

M1,M2↦M1⁒M2maps-tosubscript𝑀1subscript𝑀2subscript𝑀1subscript𝑀2M_{1},M_{2}\mapsto M_{1}M_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ↦ italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT

defines the structure of a commutative group on the set of all proper O𝑂Oitalic_O-ideals where O𝑂Oitalic_O corresponds to the zeroof the group law while the inverse of M𝑀Mitalic_M is 1𝐍⁒(M)⁒σ⁒(M)1ππ‘€πœŽπ‘€\frac{1}{\mathbf{N}(M)}\sigma(M)divide start_ARG 1 end_ARG start_ARG bold_N ( italic_M ) end_ARG italic_Οƒ ( italic_M ) [2, Ch. 2, Sect. 7.4, Th. 2].(Notice thatthe hom*omorphism of O𝑂Oitalic_O-modules

M1βŠ—OM2β†’M1⁒M2,m1βŠ—m2↦m1⁒m2formulae-sequenceβ†’subscripttensor-product𝑂subscript𝑀1subscript𝑀2subscript𝑀1subscript𝑀2maps-totensor-productsubscriptπ‘š1subscriptπ‘š2subscriptπ‘š1subscriptπ‘š2M_{1}\otimes_{O}M_{2}\to M_{1}M_{2},\ m_{1}\otimes m_{2}\mapsto m_{1}m_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ— start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT β†’ italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ— italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ↦ italic_m start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_m start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT

is a surjective hom*omorphism of projective O𝑂Oitalic_O-modules of rank 1111 and therefore is an isomorphism.This implies that the O𝑂Oitalic_O-modules M1βŠ—OM2subscripttensor-product𝑂subscript𝑀1subscript𝑀2M_{1}\otimes_{O}M_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT βŠ— start_POSTSUBSCRIPT italic_O end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT and M1⁒M2subscript𝑀1subscript𝑀2M_{1}M_{2}italic_M start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT italic_M start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT are canonically isomorphic.)

The quotient of this group modulo the subgroup of principal ideals is called the class group of O𝑂Oitalic_O and denoted by Cl⁒(O)Cl𝑂\mathrm{Cl}(O)roman_Cl ( italic_O );its elements are similarity classes of proper O𝑂Oitalic_O-ideals. It is known [2, Ch. 2, Sect. 7.4, Th. 3] that Cl⁒(O)Cl𝑂\mathrm{Cl}(O)roman_Cl ( italic_O )is a finite commutative group. We write Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ]for the kernel of multiplication by 2222 in Cl⁒(O)Cl𝑂\mathrm{Cl}(O)roman_Cl ( italic_O ). In light of (49),elements of Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ] are precisely similarity classes of those proper O𝑂Oitalic_O-ideals M𝑀Mitalic_M such thatM𝑀Mitalic_M is similar to σ⁒(M)πœŽπ‘€\sigma(M)italic_Οƒ ( italic_M ).

When O𝑂Oitalic_O is a maximal order in K𝐾Kitalic_K, the structure of the elementary 2222-group Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ]is well known ([8, Sect. V.1, Th. 39], [13, Teil II, $ 12]. The next assertion describes explicitly thestructure ofCl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ] when O𝑂Oitalic_O is any odd order (in an imaginary quadratic field).

Theorem 7.7.

Let K𝐾Kitalic_K be an imaginary quadratic field, O𝑂Oitalic_O an odd order in K𝐾Kitalic_K with discriminant D𝐷Ditalic_D.Let PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT be the set of prime divisors of D𝐷Ditalic_D and sDsubscript𝑠𝐷s_{D}italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT the cardinality of PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT.Let ℬ⁒(PD)ℬsubscript𝑃𝐷\mathcal{B}(P_{D})caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) be the Booleanalgebra of subsets of PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT where the sum of two (sub)sets is their symmetric difference. Let us consider the map

FD:ℬ⁒(PD)β†’Cl⁒(O):subscript𝐹𝐷→ℬsubscript𝑃𝐷Cl𝑂F_{D}:\mathcal{B}(P_{D})\to\mathrm{Cl}(O)italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT : caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) β†’ roman_Cl ( italic_O )

that assigns to each SβŠ‚Pn𝑆subscript𝑃𝑛S\subset P_{n}italic_S βŠ‚ italic_P start_POSTSUBSCRIPT italic_n end_POSTSUBSCRIPT the similarity class of the ideal M⁒(𝐫D,S)𝑀subscript𝐫𝐷𝑆M(\mathbf{r}_{D,S})italic_M ( bold_r start_POSTSUBSCRIPT italic_D , italic_S end_POSTSUBSCRIPT ).

Then FDsubscript𝐹𝐷F_{D}italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is a group hom*omorphism, whose image coincides with Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ] while the kernel consists of two elements, namely, βˆ…\emptysetβˆ… and PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT.

The following assertion is a natural generalization of a special case of([8, Sect. V.1, Cor. 1 to Th. 39], [13, p. 112, Korollar]).

Corollary 7.8.

Let O𝑂Oitalic_O be an odd order with discriminant D𝐷Ditalic_D in an imaginary quadratic field K𝐾Kitalic_K.Then the order of Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ] is 2sDβˆ’1superscript2subscript𝑠𝐷12^{s_{D}-1}2 start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT where sDsubscript𝑠𝐷s_{D}italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is the number of prime divisors of D𝐷Ditalic_D.

Proof of Corollary 7.8 (modulo Theorem 7.7).

One may view FDsubscript𝐹𝐷F_{D}italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPTas the surjective group hom*omorphism ℬ⁒(PD)β†’Cl⁒(O)⁒[2]→ℬsubscript𝑃𝐷Cl𝑂delimited-[]2\mathcal{B}(P_{D})\to\mathrm{Cl}(O)[2]caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) β†’ roman_Cl ( italic_O ) [ 2 ],whose kernel has order 2222. Recall that the order of ℬ⁒(PD)ℬsubscript𝑃𝐷\mathcal{B}(P_{D})caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) is 2sDsuperscript2subscript𝑠𝐷2^{s_{D}}2 start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUPERSCRIPT.Then the order of Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ] is the order of ℬ⁒(PD)ℬsubscript𝑃𝐷\mathcal{B}(P_{D})caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) divided by 2222, i.e.,2sD/2=2sDβˆ’1superscript2subscript𝑠𝐷2superscript2subscript𝑠𝐷12^{s_{D}}/2=2^{s_{D}-1}2 start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUPERSCRIPT / 2 = 2 start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT. This ends the proof.∎

Proof of Theorem 7.7.

It follows from Corollary 7.6(ii) that FDsubscript𝐹𝐷F_{D}italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is a group hom*omorphism. Since the order of every element ofℬ⁒(PD)ℬsubscript𝑃𝐷\mathcal{B}(P_{D})caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) is either 2222 or 1111, the imageFD⁒(ℬ⁒(PD))subscript𝐹𝐷ℬsubscript𝑃𝐷F_{D}(\mathcal{B}(P_{D}))italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) ) lies in Cl⁒(O)⁒[2]Cl𝑂delimited-[]2\mathrm{Cl}(O)[2]roman_Cl ( italic_O ) [ 2 ].

If S=PD𝑆subscript𝑃𝐷S=P_{D}italic_S = italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT then

𝐫D,PD=|D|=βˆ’D.subscript𝐫𝐷subscript𝑃𝐷𝐷𝐷\mathbf{r}_{D,P_{D}}=|D|=-D.bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT = | italic_D | = - italic_D .

Now it follows from Examples 7.3(ii,iii)that M⁒(βˆ’D)=D⁒O𝑀𝐷𝐷𝑂M(-D)=\sqrt{D}Oitalic_M ( - italic_D ) = square-root start_ARG italic_D end_ARG italic_O is a principal ideal and therefore ker⁑(FD)kernelsubscript𝐹𝐷\ker(F_{D})roman_ker ( italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) contains PDsubscript𝑃𝐷P_{D}italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT.Suppose that

S∈ker⁑(FD),Sβ‰ βˆ…,PD.formulae-sequence𝑆kernelsubscript𝐹𝐷𝑆subscript𝑃𝐷S\in\ker(F_{D}),\quad S\neq\emptyset,P_{D}.italic_S ∈ roman_ker ( italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) , italic_S β‰  βˆ… , italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT .

We need to arrive to a contradiction.First,

Sβ€²:=S⁒Δ⁒PD=PDβˆ–S∈ker⁑(FS),Sβ€²β‰ βˆ…,PD.formulae-sequenceassignsuperscript𝑆′𝑆Δsubscript𝑃𝐷subscript𝑃𝐷𝑆kernelsubscript𝐹𝑆superscript𝑆′subscript𝑃𝐷S^{\prime}:=S\Delta P_{D}=P_{D}\setminus S\in\ker(F_{S}),\quad S^{\prime}\neq%\emptyset,P_{D}.italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT := italic_S roman_Ξ” italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT = italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT βˆ– italic_S ∈ roman_ker ( italic_F start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT ) , italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT β‰  βˆ… , italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT .

Then

|D|=𝐫D,PD=𝐫D,PS⁒𝐫D,PSβ€²;𝐫D,PS,𝐫D,PSβ€²>1.formulae-sequence𝐷subscript𝐫𝐷subscript𝑃𝐷subscript𝐫𝐷subscript𝑃𝑆subscript𝐫𝐷superscriptsubscript𝑃𝑆′subscript𝐫𝐷subscript𝑃𝑆subscript𝐫𝐷superscriptsubscript𝑃𝑆′1|D|=\mathbf{r}_{D,P_{D}}=\mathbf{r}_{D,P_{S}}\mathbf{r}_{D,P_{S}^{\prime}};%\quad\mathbf{r}_{D,P_{S}},\mathbf{r}_{D,P_{S}^{\prime}}>1.| italic_D | = bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT end_POSTSUBSCRIPT = bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT ; bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT , bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT > 1 .(50)

This implies that both 𝐫D,PSsubscript𝐫𝐷subscript𝑃𝑆\mathbf{r}_{D,P_{S}}bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT and 𝐫D,PSβ€²subscript𝐫𝐷superscriptsubscript𝑃𝑆′\mathbf{r}_{D,P_{S}^{\prime}}bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT are divisors of odd D𝐷Ditalic_D; hence, they are odd integers as well.In addition, it follows from (50) that either 𝐫D,PS<|D|subscript𝐫𝐷subscript𝑃𝑆𝐷\mathbf{r}_{D,P_{S}}<\sqrt{|D|}bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT < square-root start_ARG | italic_D | end_ARG or 𝐫D,PSβ€²<|D|subscript𝐫𝐷superscriptsubscript𝑃𝑆′𝐷\mathbf{r}_{D,P_{S}^{\prime}}<\sqrt{|D|}bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT < square-root start_ARG | italic_D | end_ARG.Replacing if necessary S𝑆Sitalic_S by Sβ€²superscript𝑆′S^{\prime}italic_S start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT, we may and will assume that

Ξ²:=𝐫D,PS<|D|.assign𝛽subscript𝐫𝐷subscript𝑃𝑆𝐷\beta:=\mathbf{r}_{D,P_{S}}<\sqrt{|D|}.italic_Ξ² := bold_r start_POSTSUBSCRIPT italic_D , italic_P start_POSTSUBSCRIPT italic_S end_POSTSUBSCRIPT end_POSTSUBSCRIPT < square-root start_ARG | italic_D | end_ARG .

In addition, Ξ²>1𝛽1\beta>1italic_Ξ² > 1 is an odd divisor of D𝐷Ditalic_D.

Second, the condition S∈ker⁑(FD)𝑆kernelsubscript𝐹𝐷S\in\ker(F_{D})italic_S ∈ roman_ker ( italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) means that the ideal M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is principal, i.e., there is a nonzero u∈OβŠ‚K𝑒𝑂𝐾u\in O\subset Kitalic_u ∈ italic_O βŠ‚ italic_K such thatM⁒(Ξ²)=u⁒O𝑀𝛽𝑒𝑂M(\beta)=uOitalic_M ( italic_Ξ² ) = italic_u italic_O. The latter means that[wΞ²,Ξ²]=u⁒[w1,1]subscript𝑀𝛽𝛽𝑒subscript𝑀11[w_{\beta},\beta]=u[w_{1},1][ italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT , italic_Ξ² ] = italic_u [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , 1 ], which implies that

[wΞ²Ξ²,1]=uβ⁒[w1,1]subscript𝑀𝛽𝛽1𝑒𝛽subscript𝑀11\left[\frac{w_{\beta}}{\beta},1\right]=\frac{u}{\beta}[w_{1},1][ divide start_ARG italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ² end_ARG , 1 ] = divide start_ARG italic_u end_ARG start_ARG italic_Ξ² end_ARG [ italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , 1 ]

where

w1=1+D2,τβ:=wΞ²Ξ²=Ξ²+D2β’Ξ²β’β„ŒβŠ‚β„‚..formulae-sequencesubscript𝑀11𝐷2assignsubscriptπœπ›½subscript𝑀𝛽𝛽𝛽𝐷2π›½β„Œβ„‚w_{1}=\frac{1+\sqrt{D}}{2},\quad\tau_{\beta}:=\frac{w_{\beta}}{\beta}=\frac{%\beta+\sqrt{D}}{2\beta}\mathfrak{H}\subset{\mathbb{C}}..italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT = divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT := divide start_ARG italic_w start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT end_ARG start_ARG italic_Ξ² end_ARG = divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG fraktur_H βŠ‚ blackboard_C . .

This implies that (in the notation of Section 3)

Λτβ=uβ⁒Λw1.subscriptΞ›subscriptπœπ›½π‘’π›½subscriptΞ›subscript𝑀1\Lambda_{\tau_{\beta}}=\frac{u}{\beta}\Lambda_{w_{1}}.roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT end_POSTSUBSCRIPT = divide start_ARG italic_u end_ARG start_ARG italic_Ξ² end_ARG roman_Ξ› start_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT .(51)

Notice that

Re⁒(w1)=12,Im⁒(w1)=|D|2>12;formulae-sequenceResubscript𝑀112Imsubscript𝑀1𝐷212\mathrm{Re}(w_{1})=\frac{1}{2},\ \mathrm{Im}(w_{1})=\frac{\sqrt{|D|}}{2}>\frac%{1}{2};roman_Re ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG , roman_Im ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) = divide start_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 end_ARG > divide start_ARG 1 end_ARG start_ARG 2 end_ARG ;
Re⁒(τβ)=12,Im⁒(τβ)=|D|2⁒β>12;formulae-sequenceResubscriptπœπ›½12Imsubscriptπœπ›½π·2𝛽12\mathrm{Re}(\tau_{\beta})=\frac{1}{2},\ \mathrm{Im}(\tau_{\beta})=\frac{\sqrt{%|D|}}{2\beta}>\frac{1}{2};roman_Re ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG , roman_Im ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = divide start_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG > divide start_ARG 1 end_ARG start_ARG 2 end_ARG ;

the latter inequality holds, because Ξ²<|D|𝛽𝐷\beta<\sqrt{|D|}italic_Ξ² < square-root start_ARG | italic_D | end_ARG. On the other hand, since Ξ²>1𝛽1\beta>1italic_Ξ² > 1,

Im⁒(τβ)<|D|2=Im⁒(w1).Imsubscriptπœπ›½π·2Imsubscript𝑀1\mathrm{Im}(\tau_{\beta})<\frac{\sqrt{|D|}}{2}=\mathrm{Im}(w_{1}).roman_Im ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) < divide start_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 end_ARG = roman_Im ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

This implies that w1subscript𝑀1w_{1}italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT and τβsubscriptπœπ›½\tau_{\beta}italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT are distinct points of 𝔗2subscript𝔗2\mathfrak{T}_{2}fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT. In particular,

j(τβ≠j(w1).j(\tau_{\beta}\neq j(w_{1}).italic_j ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT β‰  italic_j ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

On the other hand, in light ofRemark 3.2, the equality (51) implies that the complex elliptic curves ℰτβsubscriptβ„°subscriptπœπ›½\mathcal{E}_{\tau_{\beta}}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT end_POSTSUBSCRIPT and β„°w1subscriptβ„°subscript𝑀1\mathcal{E}_{w_{1}}caligraphic_E start_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT are isomorphic, i.e.,

j⁒(τβ)=j⁒(ℰτβ)=j⁒(β„°w1)=j⁒(w1).𝑗subscriptπœπ›½π‘—subscriptβ„°subscriptπœπ›½π‘—subscriptβ„°subscript𝑀1𝑗subscript𝑀1j(\tau_{\beta})=j(\mathcal{E}_{\tau_{\beta}})=j(\mathcal{E}_{w_{1}})=j(w_{1}).italic_j ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT end_POSTSUBSCRIPT ) = italic_j ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) .

This implies that j⁒(τβ)=j⁒(w1)𝑗subscriptπœπ›½π‘—subscript𝑀1j(\tau_{\beta})=j(w_{1})italic_j ( italic_Ο„ start_POSTSUBSCRIPT italic_Ξ² end_POSTSUBSCRIPT ) = italic_j ( italic_w start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ), which gives us the desired contradiction that proves our assertion about ker⁑(FD)kernelsubscript𝐹𝐷\ker(F_{D})roman_ker ( italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ).

Now let us check the surjectiveness of

FD:ℬ⁒(PD)β†’Cl⁒(O)⁒[2].:subscript𝐹𝐷→ℬsubscript𝑃𝐷Cl𝑂delimited-[]2F_{D}:\mathcal{B}(P_{D})\to\mathrm{Cl}(O)[2].italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT : caligraphic_B ( italic_P start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ) β†’ roman_Cl ( italic_O ) [ 2 ] .

Let M𝑀Mitalic_M be a proper O𝑂Oitalic_O-ideal,whose similarity class has order 1 or 2 in Cl⁒(O)Cl𝑂\mathrm{Cl}(O)roman_Cl ( italic_O ), i.e.,M2=M⁒Msuperscript𝑀2𝑀𝑀M^{2}=M\ Mitalic_M start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT = italic_M italic_M is a principal ideal u⁒O𝑒𝑂uOitalic_u italic_O for some nonzero u∈K𝑒𝐾u\in Kitalic_u ∈ italic_K. Notice thatM=[Ο‰1,Ο‰2]𝑀subscriptπœ”1subscriptπœ”2M=[\omega_{1},\omega_{2}]italic_M = [ italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ] where {Ο‰1,Ο‰2}subscriptπœ”1subscriptπœ”2\{\omega_{1},\omega_{2}\}{ italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT } is a basis of the β„šβ„š{\mathbb{Q}}blackboard_Q-vector space K𝐾Kitalic_K. Then M𝑀Mitalic_M is similar to

1Ο‰2⁒M=[Ο‰1/Ο‰2,1]=[Ο„,1]1subscriptπœ”2𝑀subscriptπœ”1subscriptπœ”21𝜏1\frac{1}{\omega_{2}}M=[\omega_{1}/\omega_{2},1]=[\tau,1]divide start_ARG 1 end_ARG start_ARG italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT end_ARG italic_M = [ italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , 1 ] = [ italic_Ο„ , 1 ]

whereΟ„:=Ο‰1/Ο‰2βˆ‰β„šassign𝜏subscriptπœ”1subscriptπœ”2β„š\tau:=\omega_{1}/\omega_{2}\not\in{\mathbb{Q}}italic_Ο„ := italic_Ο‰ start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT / italic_Ο‰ start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βˆ‰ blackboard_Q. Since Ο„βˆˆKβŠ‚β„‚πœπΎβ„‚\tau\in K\subset{\mathbb{C}}italic_Ο„ ∈ italic_K βŠ‚ blackboard_C, it follows from (48) that Ο„βˆˆβ„‚βˆ–β„πœβ„‚β„\tau\in{\mathbb{C}}\setminus{\mathbb{R}}italic_Ο„ ∈ blackboard_C βˆ– blackboard_R.Replacing if necessary Ο„πœ\tauitalic_Ο„ by βˆ’Ο„πœ-\tau- italic_Ο„, we may and will assume that

Ο„βˆˆβ„ŒβŠ‚β„‚,M=[Ο„,1]βŠ‚KβŠ‚β„‚.formulae-sequenceπœβ„Œβ„‚π‘€πœ1𝐾ℂ\tau\in\mathfrak{H}\subset{\mathbb{C}},\quad M=[\tau,1]\subset K\subset{%\mathbb{C}}.italic_Ο„ ∈ fraktur_H βŠ‚ blackboard_C , italic_M = [ italic_Ο„ , 1 ] βŠ‚ italic_K βŠ‚ blackboard_C .

So, [Ο„,1]𝜏1[\tau,1][ italic_Ο„ , 1 ] is a proper O𝑂Oitalic_O-ideal, whose square is a principal O𝑂Oitalic_O-ideal.This means that j⁒(Ο„)βˆˆβ„π‘—πœβ„j(\tau)\in{\mathbb{R}}italic_j ( italic_Ο„ ) ∈ blackboard_R (see [9, Ch. 5, Sect. 5.4, Claim (5.4.4)].Hence, there is

Ο„β€²βˆˆπ”—βŠ‚β„Œβ’such that⁒j⁒(Ο„β€²)=j⁒(Ο„).superscriptπœβ€²π”—β„Œsuch that𝑗superscriptπœβ€²π‘—πœ\tau^{\prime}\in\mathfrak{T}\subset\mathfrak{H}\ \text{ such that }\ j(\tau^{%\prime})=j(\tau).italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ fraktur_T βŠ‚ fraktur_H such that italic_j ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_j ( italic_Ο„ ) .

It follows from the basic properties of the modular function j𝑗jitalic_j that there exists a unimodular matrix

B=(abcd)∈SL⁒(2,β„€)𝐡matrixπ‘Žπ‘π‘π‘‘SL2β„€B=\begin{pmatrix}a&b\\c&d\end{pmatrix}\in\mathrm{SL}(2,{\mathbb{Z}})italic_B = ( start_ARG start_ROW start_CELL italic_a end_CELL start_CELL italic_b end_CELL end_ROW start_ROW start_CELL italic_c end_CELL start_CELL italic_d end_CELL end_ROW end_ARG ) ∈ roman_SL ( 2 , blackboard_Z )

such that

Ο„β€²=a⁒τ+bc⁒τ+d.superscriptπœβ€²π‘Žπœπ‘π‘πœπ‘‘\tau^{\prime}=\frac{a\tau+b}{c\tau+d}.italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = divide start_ARG italic_a italic_Ο„ + italic_b end_ARG start_ARG italic_c italic_Ο„ + italic_d end_ARG .

This implies that

Ο„β€²βˆˆK,β„šβ’(Ο„β€²)=KβŠƒ[Ο„β€²,1]=1c⁒τ+d⁒[a⁒τ+b,c⁒τ+d]=1c⁒τ+d⁒[Ο„,1].formulae-sequencesuperscriptπœβ€²πΎβ„šsuperscriptπœβ€²πΎsuperset-ofsuperscriptπœβ€²11π‘πœπ‘‘π‘Žπœπ‘π‘πœπ‘‘1π‘πœπ‘‘πœ1\tau^{\prime}\in K,\ \ {\mathbb{Q}}(\tau^{\prime})=K\supset\left[\tau^{\prime}%,1\right]=\frac{1}{c\tau+d}\left[a\tau+b,c\tau+d\right]=\frac{1}{c\tau+d}\left%[\tau,1\right].italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ∈ italic_K , blackboard_Q ( italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT ) = italic_K βŠƒ [ italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , 1 ] = divide start_ARG 1 end_ARG start_ARG italic_c italic_Ο„ + italic_d end_ARG [ italic_a italic_Ο„ + italic_b , italic_c italic_Ο„ + italic_d ] = divide start_ARG 1 end_ARG start_ARG italic_c italic_Ο„ + italic_d end_ARG [ italic_Ο„ , 1 ] .

It follows thatΛτ′=[Ο„β€²,1]subscriptΞ›superscriptπœβ€²superscriptπœβ€²1\Lambda_{\tau^{\prime}}=[\tau^{\prime},1]roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = [ italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT , 1 ] is a proper O𝑂Oitalic_O-ideal that is similar to M𝑀Mitalic_M. In light of Key Lemma 3.9, there is a positive odd integer β𝛽\betaitalic_Ξ² dividing D𝐷Ditalic_Dsuch that

Ο„β€²=12+D2β’Ξ²βˆˆπ”—2βŠ‚π”—βŠ‚β„Œ.superscriptπœβ€²12𝐷2𝛽subscript𝔗2π”—β„Œ\tau^{\prime}=\frac{1}{2}+\frac{\sqrt{D}}{2\beta}\in\mathfrak{T}_{2}\subset%\mathfrak{T}\subset\mathfrak{H}.italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ‚ fraktur_T βŠ‚ fraktur_H .

This implies that

Λτ′=[12+D2⁒β,1]=1β⁒[Ξ²+D2,Ξ²]=1β⁒M⁒(Ξ²).subscriptΞ›superscriptπœβ€²12𝐷2𝛽11𝛽𝛽𝐷2𝛽1𝛽𝑀𝛽\Lambda_{\tau^{\prime}}=\left[\frac{1}{2}+\frac{\sqrt{D}}{2\beta},1\right]=%\frac{1}{\beta}\left[\frac{\beta+\sqrt{D}}{2},\beta\right]=\frac{1}{\beta}M(%\beta).roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT = [ divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG , 1 ] = divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG [ divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG , italic_Ξ² ] = divide start_ARG 1 end_ARG start_ARG italic_Ξ² end_ARG italic_M ( italic_Ξ² ) .

This implies that M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a proper O𝑂Oitalic_O-ideal that is similar to Λτ′subscriptΞ›superscriptπœβ€²\Lambda_{\tau^{\prime}}roman_Ξ› start_POSTSUBSCRIPT italic_Ο„ start_POSTSUPERSCRIPT β€² end_POSTSUPERSCRIPT end_POSTSUBSCRIPT and therefore to M𝑀Mitalic_M.It follows from Theorem 7.4 that β𝛽\betaitalic_Ξ² is a saturated divisor of D𝐷Ditalic_D. This implies that if S𝑆Sitalic_S is the set of prime divisors of β𝛽\betaitalic_Ξ² thenΞ²=𝐫D,S𝛽subscript𝐫𝐷𝑆\beta=\mathbf{r}_{D,S}italic_Ξ² = bold_r start_POSTSUBSCRIPT italic_D , italic_S end_POSTSUBSCRIPT. This means that FD⁒(S)subscript𝐹𝐷𝑆F_{D}(S)italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( italic_S ) is the similarity class of M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ), which coincides with the similarity class of M𝑀Mitalic_M.It follows that the similarity class of M𝑀Mitalic_M lies in the image of FDsubscript𝐹𝐷F_{D}italic_F start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT. This ends the proof.∎

8. Odd elliptic curves revisited

Theorem 8.1.

Let D𝐷Ditalic_D be a negative integer that is congruent to 1111 modulo 4444. Let sDsubscript𝑠𝐷s_{D}italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT be the number of prime divisors of D𝐷Ditalic_D.

  1. (1)

    Let E𝐸Eitalic_E be an elliptic curve over β„‚β„‚{\mathbb{C}}blackboard_C with j⁒(E)βˆˆβ„π‘—πΈβ„j(E)\in{\mathbb{R}}italic_j ( italic_E ) ∈ blackboard_R. Then the following two conditions are equivalent.

    • (i)

      E𝐸Eitalic_E has CM and its endomorphism ringEnd⁒(E)End𝐸\mathrm{End}(E)roman_End ( italic_E ) is an order of discriminant D𝐷Ditalic_D. (In particular, E𝐸Eitalic_E is odd.)

    • (ii)

      There exists a positive saturated divisor β𝛽\betaitalic_Ξ² of D𝐷Ditalic_D such thatΞ²<|D|𝛽𝐷\beta<\sqrt{|D|}italic_Ξ² < square-root start_ARG | italic_D | end_ARG and

      j⁒(E)=j⁒(Ο„)⁒where⁒τ=12+D2⁒β=12+|D|2β’Ξ²β’π’βˆˆπ”—2βŠ‚β„Œ.π‘—πΈπ‘—πœwhere𝜏12𝐷2𝛽12𝐷2𝛽𝐒subscript𝔗2β„Œj(E)=j(\tau)\ \text{where}\ \tau=\frac{1}{2}+\frac{\sqrt{D}}{2\beta}=\frac{1}{%2}+\frac{\sqrt{|D|}}{2\beta}\mathbf{i}\in\mathfrak{T}_{2}\subset\mathfrak{H}.italic_j ( italic_E ) = italic_j ( italic_Ο„ ) where italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG bold_i ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT βŠ‚ fraktur_H .
  2. (2)

    Let π’₯D⁒(ℝ)subscriptπ’₯𝐷ℝ\mathcal{J}_{D}({\mathbb{R}})caligraphic_J start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( blackboard_R ) be the set of j𝑗jitalic_j-invariants of all E𝐸Eitalic_E that enjoy the equivalent properties (i)-(ii).Then π’₯D⁒(ℝ)subscriptπ’₯𝐷ℝ\mathcal{J}_{D}({\mathbb{R}})caligraphic_J start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ( blackboard_R ) consists of 2sDβˆ’1superscript2subscript𝑠𝐷12^{s_{D}-1}2 start_POSTSUPERSCRIPT italic_s start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT - 1 end_POSTSUPERSCRIPT distinct real numbers and lies in the semi-open interval[j⁒(1+D2),1728)𝑗1𝐷21728\left[j\left(\frac{1+\sqrt{D}}{2}\right),1728\right)[ italic_j ( divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ) , 1728 ).

Proof.

(1) Suppose that E𝐸Eitalic_E enjoys the properties (i). Since j⁒(E)βˆˆβ„π‘—πΈβ„j(E)\in{\mathbb{R}}italic_j ( italic_E ) ∈ blackboard_R,there is (precisely) one Ο„βˆˆπ”—πœπ”—\tau\in\mathfrak{T}italic_Ο„ ∈ fraktur_T such that E𝐸Eitalic_E is isomorphic to β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPTand j⁒(E)=j⁒(Ο„)π‘—πΈπ‘—πœj(E)=j(\tau)italic_j ( italic_E ) = italic_j ( italic_Ο„ ). So, we may assume that E=ℰτ𝐸subscriptβ„°πœE=\mathcal{E}_{\tau}italic_E = caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT.In particular, β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT is odd. It follows from Key Lemma 3.9(i) that Re⁒(Ο„)β‰ 0Re𝜏0\mathrm{Re}(\tau)\neq 0roman_Re ( italic_Ο„ ) β‰  0,i.e.,

Ο„βˆˆπ”—2,Re⁒(Ο„)=12.formulae-sequence𝜏subscript𝔗2Re𝜏12\tau\in\mathfrak{T}_{2},\ \mathrm{Re}(\tau)=\frac{1}{2}.italic_Ο„ ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT , roman_Re ( italic_Ο„ ) = divide start_ARG 1 end_ARG start_ARG 2 end_ARG .

Since O=End⁒(β„°Ο„)β‰…OΟ„βŠ‚β„‚π‘‚Endsubscriptβ„°πœsubscriptπ‘‚πœβ„‚O=\mathrm{End}(\mathcal{E}_{\tau})\cong O_{\tau}\subset{\mathbb{C}}italic_O = roman_End ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) β‰… italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ blackboard_C is an order with odd discriminant D𝐷Ditalic_D,

OΟ„=℀⁒[1+D2]=β„€+℀⁒1+D2βŠ‚β„‚.subscriptπ‘‚πœβ„€delimited-[]1𝐷2β„€β„€1𝐷2β„‚O_{\tau}={\mathbb{Z}}\left[\frac{1+\sqrt{D}}{2}\right]={\mathbb{Z}}+{\mathbb{Z%}}\ \frac{1+\sqrt{D}}{2}\subset{\mathbb{C}}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = blackboard_Z [ divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ] = blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG βŠ‚ blackboard_C .

Since 1+D2∈OΟ„1𝐷2subscriptπ‘‚πœ\frac{1+\sqrt{D}}{2}\in O_{\tau}divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ∈ italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT, it follows from Key Lemma 3.9(ii) that there is a positive odd divisor β𝛽\betaitalic_Ξ² of D𝐷Ditalic_D such that

Ο„=12+D2⁒β=12+|D|2⁒β⁒𝐒.𝜏12𝐷2𝛽12𝐷2𝛽𝐒\tau=\frac{1}{2}+\frac{\sqrt{D}}{2\beta}=\frac{1}{2}+\frac{\sqrt{|D|}}{2\beta}%\mathbf{i}.italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG | italic_D | end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG bold_i .

Hence,

K:=β„šβ’(Ο„)=β„šβ’(D)βŠ‚β„‚assignπΎβ„šπœβ„šπ·β„‚K:={\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{D})\subset{\mathbb{C}}italic_K := blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) βŠ‚ blackboard_C

is an imaginary quadratic field and

β„€+℀⁒1+D2=OΟ„βŠ‚K.β„€β„€1𝐷2subscriptπ‘‚πœπΎ{\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D}}{2}=O_{\tau}\subset K.blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠ‚ italic_K .

Since Ο„βˆˆπ”—2𝜏subscript𝔗2\tau\in\mathfrak{T}_{2}italic_Ο„ ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT, its imaginary part is strictly greater than 1/2121/21 / 2, i.e,

Ξ²<|D|.𝛽𝐷\beta<\sqrt{|D|}.italic_Ξ² < square-root start_ARG | italic_D | end_ARG .

Recall that

OΟ„={λ∈K∣λ⁒[Ο„,1]βŠ‚[Ο„,1]}.subscriptπ‘‚πœconditional-setπœ†πΎπœ†πœ1𝜏1O_{\tau}=\{\lambda\in K\mid\lambda[\tau,1]\subset[\tau,1]\}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = { italic_Ξ» ∈ italic_K ∣ italic_Ξ» [ italic_Ο„ , 1 ] βŠ‚ [ italic_Ο„ , 1 ] } .

We have

[Ο„,1]=[12+D2⁒β,1]=12⁒β⁒[Ξ²,Ξ²+D2]=12⁒β⁒M⁒(Ξ²,D)=12⁒β⁒M⁒(Ξ²).𝜏112𝐷2𝛽112𝛽𝛽𝛽𝐷212𝛽𝑀𝛽𝐷12𝛽𝑀𝛽[\tau,1]=\left[\frac{1}{2}+\frac{\sqrt{D}}{2\beta},1\right]=\frac{1}{2\beta}%\left[\beta,\frac{\beta+\sqrt{D}}{2}\right]=\frac{1}{2\beta}M(\beta,D)=\frac{1%}{2\beta}M(\beta).[ italic_Ο„ , 1 ] = [ divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG , 1 ] = divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG [ italic_Ξ² , divide start_ARG italic_Ξ² + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ] = divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG italic_M ( italic_Ξ² , italic_D ) = divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG italic_M ( italic_Ξ² ) .

It follows that M⁒(Ξ²)𝑀𝛽M(\beta)italic_M ( italic_Ξ² ) is a proper ideal in OΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT, i.e.,

OΟ„={λ∈K∣λ⁒M⁒(Ξ²)∈M⁒(Ξ²)}.subscriptπ‘‚πœconditional-setπœ†πΎπœ†π‘€π›½π‘€π›½O_{\tau}=\{\lambda\in K\mid\lambda M(\beta)\in M(\beta)\}.italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = { italic_Ξ» ∈ italic_K ∣ italic_Ξ» italic_M ( italic_Ξ² ) ∈ italic_M ( italic_Ξ² ) } .

By Theorem 7.4(ii), β𝛽\betaitalic_Ξ² is relatively prime to D/β𝐷𝛽D/\betaitalic_D / italic_Ξ², which means that β𝛽\betaitalic_Ξ² is a saturated divisor of D𝐷Ditalic_D. This proves that (i) implies (ii).

Conversely, suppose that (ii) holds. We may assume that E=ℰτ𝐸subscriptβ„°πœE=\mathcal{E}_{\tau}italic_E = caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT whereΟ„=12+D2β’Ξ²βˆˆπ”—2𝜏12𝐷2𝛽subscript𝔗2\tau=\frac{1}{2}+\frac{\sqrt{D}}{2\beta}\in\mathfrak{T}_{2}italic_Ο„ = divide start_ARG 1 end_ARG start_ARG 2 end_ARG + divide start_ARG square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 italic_Ξ² end_ARG ∈ fraktur_T start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT; here β𝛽\betaitalic_Ξ² is a positive saturated divisor of D𝐷Ditalic_D, which is odd, since D𝐷Ditalic_D is odd.Then

j⁒(β„°Ο„)=j⁒(Ο„)βˆˆβ„.𝑗subscriptβ„°πœπ‘—πœβ„j(\mathcal{E}_{\tau})=j(\tau)\in{\mathbb{R}}.italic_j ( caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT ) = italic_j ( italic_Ο„ ) ∈ blackboard_R .

Clearly,K:=β„šβ’(Ο„)=β„šβ’(D)assignπΎβ„šπœβ„šπ·K:={\mathbb{Q}}(\tau)={\mathbb{Q}}(\sqrt{D})italic_K := blackboard_Q ( italic_Ο„ ) = blackboard_Q ( square-root start_ARG italic_D end_ARG ) is an imaginary quadratic field. Hence, β„°Ο„subscriptβ„°πœ\mathcal{E}_{\tau}caligraphic_E start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT has CM.By Key Lemma 3.9(ii),

OΟ„βŠƒβ„€+β„€1+D2=β„€[1+D2]=:OD,O_{\tau}\supset{\mathbb{Z}}+{\mathbb{Z}}\ \frac{1+\sqrt{D}}{2}={\mathbb{Z}}%\left[\frac{1+\sqrt{D}}{2}\right]=:O_{D},italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT βŠƒ blackboard_Z + blackboard_Z divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG = blackboard_Z [ divide start_ARG 1 + square-root start_ARG italic_D end_ARG end_ARG start_ARG 2 end_ARG ] = : italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT ,

where ODsubscript𝑂𝐷O_{D}italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT is an odd order of discriminant D𝐷Ditalic_D. We need to prove the equality OΟ„=ODsubscriptπ‘‚πœsubscript𝑂𝐷O_{\tau}=O_{D}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT = italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT.

As above,[Ο„,1]=12⁒β⁒M⁒(Ξ²)𝜏112𝛽𝑀𝛽[\tau,1]=\frac{1}{2\beta}M(\beta)[ italic_Ο„ , 1 ] = divide start_ARG 1 end_ARG start_ARG 2 italic_Ξ² end_ARG italic_M ( italic_Ξ² ) and thereforeOΟ„subscriptπ‘‚πœO_{\tau}italic_O start_POSTSUBSCRIPT italic_Ο„ end_POSTSUBSCRIPT coincides with

{λ∈K∣λ⁒M⁒(Ξ²)∈M⁒(Ξ²)}.conditional-setπœ†πΎπœ†π‘€π›½π‘€π›½\{\lambda\in K\mid\lambda M(\beta)\in M(\beta)\}.{ italic_Ξ» ∈ italic_K ∣ italic_Ξ» italic_M ( italic_Ξ² ) ∈ italic_M ( italic_Ξ² ) } .

In light of Theorem 7.4(ii), the latter coincides with ODsubscript𝑂𝐷O_{D}italic_O start_POSTSUBSCRIPT italic_D end_POSTSUBSCRIPT, because β𝛽\betaitalic_Ξ² is a saturated divisor of D𝐷Ditalic_D.

(2) In order to prove the last assertion of our theorem,it suffices to recall that the function

[1/2,∞]→ℝ,t↦j⁒(1/2+𝐒⁒t)formulae-sequenceβ†’12ℝmaps-to𝑑𝑗12𝐒𝑑[1/2,\infty]\to{\mathbb{R}},\quad t\mapsto j(1/2+\mathbf{i}t)[ 1 / 2 , ∞ ] β†’ blackboard_R , italic_t ↦ italic_j ( 1 / 2 + bold_i italic_t )

is strictly decreasing and j⁒(1/2+𝐒/2)=1728𝑗12𝐒21728j(1/2+\mathbf{i}/2)=1728italic_j ( 1 / 2 + bold_i / 2 ) = 1728.

∎

Acknowledgements. I am grateful to Jean-Louis Colliot-ThΓ©lΓ¨ne and Alena Pirutka for an interesting and stimulating questionabout the distribution of j𝑗jitalic_j-invariants of certain elliptic curves of CM type and for their useful comments to a preliminary version of this paper,which may be viewed as an extension (or a variant) of my answer [4, Sect. 8]. I thank David Masser and Serge Vladuts for their interest in this paper and stimulatingdiscussions.

References

  • [1] E. Artin and G. Whaples, Axiomatic characterization of fields by the product formula for valuations.Bull. Amer. Math. Soc. 51:7 (1945), 469–492.Reprinted in: Exposition by Emil Artin: A selection. American Mathematical Society, Providence, RI, 2007.
  • [2] Z.I. Borevich, I.R. Shafarevich, Number Theory. Academic Press, New York and London, 1966.
  • [3] N. Bourbaki, AlgΓ©bre Commutative, Chapitres 1 Γ‘ 4. Springer-Verlag, Berlin Heidelberg 2006.
  • [4] J.-L. Colliot-ThΓ©lΓ¨ne and A. Pirutka, Certaines fibrations en surfaces quadriques rΓ©elles.arXiv:2406.00463 [math.AG].
  • [5] A. Knapp, Elliptic Curves. Princeton University Press, Princeton, NJ, 1992.
  • [6] B. Gross, Arithmetic on elliptic curves with complex multiplication. Lecture Notes in Math. 776, Springer-Verlag,Berlin Heidelberg New York, 1980.
  • [7] D. HusemΓΆller, Elliptic Curves, 2nd edition. GTM 111, Springer-Verlag, New York, 2004.
  • [8] A. FrΓΆlich, M. Taylor, Algebraic Number Theory. Cambridge University Press, 1991.
  • [9] G. Shimura, Introduction to the arithmetic theory of automorphic functions. Princeton University Press, Princeton, NJ, 1971.
  • [10] G. Shimura, Abelian varieties with Complex Multiplication and Modular Functions. Princeton University Press, Princeton, NJ, 1998.
  • [11] J. Silverman, Arithmetic of elliptic curves, 2nd edition. GTM 106,Springer-Verlag, New York, 2009.
  • [12] J. Silverman, Advanced topics in the arithmetic of elliptic curves. GTM 151,Springer-Verlag, New York, 1994.
  • [13] D. Zagier, Zetafunktionen und quadratische KΓΆrper.Springer-Verlag, Berlin Heidelberg, New York, 1981.
Odd and Even Elliptic Curves with Complex Multiplication (2024)

References

Top Articles
Latest Posts
Article information

Author: Virgilio Hermann JD

Last Updated:

Views: 5638

Rating: 4 / 5 (61 voted)

Reviews: 84% of readers found this page helpful

Author information

Name: Virgilio Hermann JD

Birthday: 1997-12-21

Address: 6946 Schoen Cove, Sipesshire, MO 55944

Phone: +3763365785260

Job: Accounting Engineer

Hobby: Web surfing, Rafting, Dowsing, Stand-up comedy, Ghost hunting, Swimming, Amateur radio

Introduction: My name is Virgilio Hermann JD, I am a fine, gifted, beautiful, encouraging, kind, talented, zealous person who loves writing and wants to share my knowledge and understanding with you.